The model of the social system «applicants of the technical university» via complex network approach
Matematičeskoe modelirovanie, Tome 30 (2018) no. 1, pp. 63-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a mathematical model of the admission campaign of technical university, based on a network representation of the interaction of applicants with each other. The time evolution study of the network structure revealed a process of its significant restructuring, expressed in increasing of the number of connections between the structural clusters associated with the faculties and institutes, affiliated to the university. It has been found that such reorganization is related to the switch in students preferences in specialties selection, what can be practically used to increase the effectiveness of the admission campaign and career guidance.
Keywords: complex networks, social networks, mathematical model, high-level education.
@article{MM_2018_30_1_a5,
     author = {M. V. Goremyko and I. R. Pleve and V. V. Makarov and A. E. Hramov},
     title = {The model of the social system {\guillemotleft}applicants of the technical university{\guillemotright} via complex network approach},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--75},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_1_a5/}
}
TY  - JOUR
AU  - M. V. Goremyko
AU  - I. R. Pleve
AU  - V. V. Makarov
AU  - A. E. Hramov
TI  - The model of the social system «applicants of the technical university» via complex network approach
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 63
EP  - 75
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_1_a5/
LA  - ru
ID  - MM_2018_30_1_a5
ER  - 
%0 Journal Article
%A M. V. Goremyko
%A I. R. Pleve
%A V. V. Makarov
%A A. E. Hramov
%T The model of the social system «applicants of the technical university» via complex network approach
%J Matematičeskoe modelirovanie
%D 2018
%P 63-75
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_1_a5/
%G ru
%F MM_2018_30_1_a5
M. V. Goremyko; I. R. Pleve; V. V. Makarov; A. E. Hramov. The model of the social system «applicants of the technical university» via complex network approach. Matematičeskoe modelirovanie, Tome 30 (2018) no. 1, pp. 63-75. http://geodesic.mathdoc.fr/item/MM_2018_30_1_a5/

[1] Boccaletti S., Latora V., Moreno Y. et al., “Complex Networks: Structure and Dynamics”, Phys. Rep., 424 (2006), 175 | DOI | MR | Zbl

[2] Makarov V. V., Koronovskii A. A., Maksimenko V. A. et al., “Emergence of a multilayer structure in adaptive networks of phase oscillators”, Chaos, Solitons Fractals, 84 (2016), 23 | DOI | Zbl

[3] McPherson M., Smith-Lovin L., Cook J. M., “Birds of a feather: Homophily in Social Networks”, Annual Review Sociology, 27 (2001), 415 | DOI

[4] Aleshkovskii I. A., Ivanov A. V., Ilin I. V. i dr., Modelirovanie nelineinoi dinamiki globalnykh protsessov, eds. Ilin I. V., Trubetskov D. I., Izdatelstvo Moskovskogo universiteta, M., 2010, 412 pp.

[5] Onnela J. P., Saramaki J., Hyvonen J. et al., “Structure and tie strengths in mobile communication networks”, Proc. Nat. Acad. Sci., 104 (2007), 7332 | DOI

[6] Gasnikov A. V., Dorn Iu. V., Nesterov Iu. E. i dr., “O trekhstadiinoi versii modeli statsionarnoi dinamiki transportnykh potokov”, Matemat. modelirovanie, 26:6 (2014), 34–70 | Zbl

[7] Tero A., Kobayashi R., Nakagaki T., “A mathematical model for adaptive transport network in path finding by true slime mold”, Journal of Theoretical Biology, 244:4 (2007), 553 | DOI | MR

[8] Nishikawa T., Motter A. E., “Maximum Performance at Minimum Cost in Network Synchronization”, Physica D, 224 (2006), 77 | DOI | MR | Zbl

[9] Bullmore E., Sporns O., “Complex brain networks: graph theoretical analysis of structural and functional systems”, Nature Review Neuroscience, 10 (2009), 186 | DOI

[10] Onnela J. P., Saramaki J., Hyvonen J. et al., “Analysis of a large-scale weighted network of one-toone human communication”, New Journal of Physics, 9 (2007), 179 | DOI

[11] Petrov A. P., Maslov A. I., Tsaplin N. A., “Modeling position selection by individuals during information warfare in society”, Math. Models and Computer Simulations, 8:4 (2016), 401–408 | DOI | MR | Zbl

[12] Agreste S., Catanese S., De Meo P. et al., Network Structure and Resilience of Mafia Syndicates, arXiv: 1509.01608

[13] Hummon N. P., Dereian P., “Connectivity in a citation network: The development of DNA theory”, Social Networks, 11:1 (1989), 39–63 | DOI

[14] Strikhanov M. N., Trubetskov D. I., Koronovskii A. A., Sharaevskii Iu. P., Khramov A. E., Vysshaia shkola Rossii s pozitsii nelineinoi dinamiki (problemy, otsenki, modeli), Fizmatlit, M., 2007, 192 pp.

[15] Pleve I. R., Khramov A. E., Ivanov A. V., Khramova M. V., Moskalenko O. I., “Nauchno-obrazovatelnyi tsentr kak “tochka rosta” tekhnicheskogo universiteta”, Vysshee obrazov. v Rossii, 5 (2014), 5–11

[16] Teitelbaum T., Balenzuela P., Cano P., Javier M. Buldu, “Community structures and role detection in music network”, Chaos, 18 (2008), 043105 | DOI

[17] Bastian M., Heymann S., Jacomy M., “Gephi: an open source software for exploring and manipulating networks”, International AAAI Conference on Weblogs and Social Media (2009)

[18] Goh K.-I., Oh E., Kahng B., Kim D., “Betweenness centrality correlation in social networks”, Phys. Rev. E, 67 (2003), 017101 | DOI

[19] Réka A., Barabási A.-L., “Statistical mechanics of complex networks”, Reviews of modern physics, 74 (2002), 47 | DOI | MR | Zbl

[20] Wasserman S., Faust K., Social Network Analysis: Methods and Applications, Cambridge University Press, Cambridge, 1994

[21] Watts D. J., Strogatz S., “Collective dynamics of 'small-world' networks”, Nature, 393 (1998), 440 | DOI | MR | Zbl

[22] Fiedler M., “Laplacian of graphs and algebraic connectivity”, Comb. Graph Theory, 25 (1989), 57 | MR | Zbl