Analysis dynamic of deploy tether systems consisting of two nano-satellites
Matematičeskoe modelirovanie, Tome 30 (2018) no. 1, pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of the formation of the space tether system consisting of two nano-satellites in orbit Earth satellite is investigated. Stages of separation of nano-satellites and deployment for a given final length of tether are considered. The mathematical model of the motion of the system, taking into account the angular motion of the end-bodies, stretch tether, the dynamics of the control device to release the tether is designed. For deployment of system simple parametric law, under which provided constraints on the angular motion of nano-satellites to the direction of the tether, is proposed. Comparison of the numerical results obtained by the constructed model and a simpler model of movement of tether system is provided.
Mots-clés : nano-satellite
Keywords: space tether system, deployment, dynamics, control, mathematical modeling.
@article{MM_2018_30_1_a1,
     author = {Ch. Wang and Yu. M. Zabolotnov},
     title = {Analysis dynamic of deploy tether systems consisting of two nano-satellites},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_1_a1/}
}
TY  - JOUR
AU  - Ch. Wang
AU  - Yu. M. Zabolotnov
TI  - Analysis dynamic of deploy tether systems consisting of two nano-satellites
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 17
EP  - 30
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_1_a1/
LA  - ru
ID  - MM_2018_30_1_a1
ER  - 
%0 Journal Article
%A Ch. Wang
%A Yu. M. Zabolotnov
%T Analysis dynamic of deploy tether systems consisting of two nano-satellites
%J Matematičeskoe modelirovanie
%D 2018
%P 17-30
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_1_a1/
%G ru
%F MM_2018_30_1_a1
Ch. Wang; Yu. M. Zabolotnov. Analysis dynamic of deploy tether systems consisting of two nano-satellites. Matematičeskoe modelirovanie, Tome 30 (2018) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/MM_2018_30_1_a1/

[1] R. Zhong, Z. Zhu, “Dynamics of Nanosatellite Deorbit by Bare Electrodynamic Tether in Low Earth Orbit”, J. of Spacecraft and Rockets, 50:3 (2013), 691–700 | DOI

[2] I.V. Belokonov, A.V. Kramlikh, I.A. Timbai, “Low-orbital transformable nanosatellite: research of the dynamics and possibilities of navigational and communication problems solving for passive aerodynamic stabilization”, Advances in the Astronautical Sciences, 2nd Intern. Academy of Astronautics Conf. on Dynamics and Control of Space Systems DyCoSS 2014, 2015, 383–397

[3] K.A. Young, “Contamination-Free Ultrahigh Precision Formation Flying Method for Micro-, Nano-, and Pico-Satellites with Nanometer Accuracy”, Space Technology and Applications International Forum – STAIF-2006, American Institute Physics, 2006, 1213–1223 | MR

[4] G. Avanzini, M. Fed, “Refined dynamical analysis of multi-tethered satellite formations”, Acta Astronautica, 84 (2013), 36–48 | DOI

[5] D. Alary, K. Andreev, P. Boyko, E. Ivanova, D. Pritykin, V. Sidorenko, “Dynamics of multi-tethered pyramidal satellite formation”, Acta Astronautica, 117 (2015), 222–230 | DOI

[6] A.A. Shilov, “Optimalnaia korrektsyia matritsy napravliayuschikh kosinusov pri raschetakh vrashcheniia tverdogo tela”, Uchenye zapiski TsAGI, 8:5 (1977), 137–139

[7] Yu. M. Zabolotnov, “Movement of Light Re-entry Capsule around of the Centre of Mass in Atmosphere”, Proceedings of the Russian-European Summer Space School “Future Spase Technologies and Experiments in Space” (2003), ESA Publication Division, 2004, 21–28

[8] V.V. Beletskii, Dvizhenie iskusstvennogo sputnika otnositelno tsentra mass, Nauka, M., 1965, 416 pp.

[9] G.S. Narimanov, Osnovy teorii poleta kosmicheskikh apparatov, Mashinostroenie, M., 1972, 608 pp.

[10] C. Menon, M. Kruijff, A. Vavonliotis, “Design and Testing of a Space Mechanism for Tether Deployment”, J. Spacecraft and Rockets, 44:4 (2007), 927–939 | DOI

[11] C. Wang, M. Zhang, A. Li, Yu. Zabolotnov, “Dynamics modeling and trajectory tracking control of space tether system”, Chinese Journal of Applied Mechanics, 31:6 (2014), 895–899

[12] Yu.M. Zabolotnov, “Control of the deployment of a tethered orbital system with a small load into a vertical position”, Applied Mathematics and Mechanics, 79:1 (2015), 28–34 | DOI | MR

[13] Yu. Zabolotnov, O. Naumov, “Methods of the analysis of motion of small space vehicles around the centre of masses at deployment of space tether system”, Int. J. Space Science and Engineering, 2:4 (2014), 305–326 | DOI

[14] E. Hairer, S. Norsett, G. Wanner, Solving Ordinary Differential Equations. Nonstiff Problems, Springer-Verlag, Berlin etc., 1987, 480 pp. | MR | Zbl

[15] O.B. Arushanian, S.F. Zaletkin, Chislennoe reshenie obyknovennykh differentsyalnykh uravnenii na Fortrane, Izdatelstvo MGU, M., 1990, 381 pp.

[16] V.V. Beletskii, E.M. Levin, Dinamika kosmicheskikh trosovykh sistem, Nauka, M., 1990, 336 pp.

[17] O.N. Naumov, “Matematicheskaia model dvizheniia kosmicheskoi trosovoi sistemy v forme uravnenii Gamiltona”, Matematicheskoe modelirovanie, 27:9 (2015), 65–72 | Zbl