Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media
Matematičeskoe modelirovanie, Tome 30 (2018) no. 1, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical study of applicability of quasi-hydrodynamic equations for simulation of isothermal moderately rarefied gas flows in two-dimensional domains with complex geometry typical for pore space of core samples was done. Classical Maxwell slip boundary conditions are used to take into account slippage effect on the solid boundaries. Its approximation is suggested and implementation algorithm is described. Simulation results for several samples under different averaged pressure are presented. The qualitatively right Klinkenberg slippage coefficient dependence on ratio of absolute permeability coefficient to sample porosity was obtained.
Mots-clés : quasi-hydrodynamic equations
Keywords: digital rock physics, moderately rarefied gas, slippage effect, slip boundary condition, Klinkenberg slippage coefficient.
@article{MM_2018_30_1_a0,
     author = {V. A. Balashov},
     title = {Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_1_a0/}
}
TY  - JOUR
AU  - V. A. Balashov
TI  - Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 3
EP  - 16
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_1_a0/
LA  - ru
ID  - MM_2018_30_1_a0
ER  - 
%0 Journal Article
%A V. A. Balashov
%T Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media
%J Matematičeskoe modelirovanie
%D 2018
%P 3-16
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_1_a0/
%G ru
%F MM_2018_30_1_a0
V. A. Balashov. Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media. Matematičeskoe modelirovanie, Tome 30 (2018) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2018_30_1_a0/

[1] M. Gad-el-Hak (ed.), The MEMS Handbook, CRC Press, 2002, 1332 pp. | Zbl

[2] L.J. Klinkenberg, “The Permeability Of Porous Media To Liquids And Gases”, Drilling and Production Practice, American Petroleum Institute, 1941, 200–213

[3] Porody gornye. Metody opredeleniya kollektorskih svojstv. Metod opredeleniya koehfficienta absolyutnoj gazopronicaemosti pri stacionarnoj i nestacionarnoj fil'tracii, GOST 26450.2-85

[4] C. Cercignani, Theory and application of the Boltzmann equation, Scottish Academic Press, 1975, 415 pp. | MR | Zbl

[5] M. Gad-el-Hak, “The Fluid Mechanics of Microdevices – The Freeman Scholar Lecture”, Journal of Fluids Engineering, 1999, 5–33 | DOI

[6] J.C. Maxwell, “On Stresses in Rarefied Gases Arising from Inequalities of Temperature”, Philosophical Transactions of the Royal Society of London, 170 (1879), 231–256 | DOI

[7] M.N. Kogan, Rarefied Gas Dynamics, Springer US, 1969, 515 pp.

[8] G.N. Abramovich, Prikladnaya gazovaya dinamika, v. 2, Nauka, M., 1991, 304 pp.

[9] L.G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, 1966, 816 pp. | MR

[10] G.E. Karniadakis, A. Beskok, N. Aluru, Microflows and nanoflows: fundamentals and simulation, Springer-Verlag, NY, 2005, 818 pp. | MR | Zbl

[11] Yu.V. Sheretov, Dinamika sploshnyh sred pri prostranstvenno-vremennom osrednenii, RChD, M.–Izhevsk, 2009, 400 pp.

[12] R. Deissler, “An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases”, International Journal of Heat and Mass Transfer, 7:6 (1964), 681–694 | DOI | Zbl

[13] C. Aubert, S. Colin, “High-order boundary conditions for gaseous flows in rectangular microducts”, Microscale Thermophysical Engineering, 5:1 (2001), 41–54 | DOI

[14] S. Colin, P. Lalonde, R. Caen, “Validation of a Second-Order Slip Flow Model in Rectangular Microchannels”, Heat Transfer Engineering, 25:3 (2004), 23–30 | DOI

[15] B.N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.

[16] T.G. Elizarova, Quasi-gas dynamic equations, Springer, Berlin–Heidelberg, 2009, 286 pp. | MR | Zbl

[17] M.V. Semenov, Yu.V. Sheretov, “Chislennoe modelirovanie dozvukovyh osesimmetrichnyh techenij gaza vblizi shara”, Vestnik TvGU. Seriya: Prikladnaya matematika, 1:3 (2006), 78–97

[18] W.-M. Zhang, G. Meng, X. Wei, “A review on slip models for gas microflows”, Microfluidics and Nanofluidics, 13:6 (2012), 845–882 | DOI | MR

[19] O.A. Shemarova, Razrabotka matematicheskih modelej i metodov rascheta processa techeniya razrezhennyh gazov pri vzaimodejstvii s napravlennymi potokami chastic, dissert. ... kand. fiz.-mat. nauk, MGTU im. N.E. Baumana, M., 2015

[20] J. Dvorkin et al., “Relevance of computational rock physics”, Geophysics, 76:5 (2011), E141–E153 | DOI

[21] A.A. Zlotnik, “On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force”, Comp. Math. and Math. Phys., 56:1 (2016), 303–319 | DOI | DOI | MR | Zbl

[22] K.S. Basniev, I.N. Kochina, V.M. Maksimov, Podzemnaya gidromekhanika, v. 2, Nedra, M., 1993, 416 pp.

[23] V.A. Balashov, “Chislennoe modelirovanie dvumernyh techenij umerenno-razrezhennogo gaza v oblastyah so slozhnoj geometriej”, Keldysh Institute preprints, 2016, 104, 24 pp.

[24] D.V. Sivuhin, Obshchij kurs fiziki, v. II, Termodinamika i molekulyarnaya fizika, Fizmatlit, M., 2003, 576 pp.

[25] S.L. Lee, J.H. Yang, “Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders”, International Journal of Heat and Mass Transfer, 40:13 (1997), 3149–3155 | DOI | Zbl

[26] W. Degruyter et al., “Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices”, Geosphere, 6:5 (2010), 470–481 | DOI

[27] Palabos: Parallel lattice Boltzmann solver, http://www.palabos.org/

[28] F.A. Florence et al., “Improved Permeability Prediction Relations for Low-Permeability Sands”, Rocky Mountain Oil Gas Technology Symposium (2007, 16–18 April, Denver, Colorado), U.S.A. Society of Petroleum Engineers

[29] F. Civan, “Effective Correlation of Apparent Gas Permeability in Tight Porous Media”, Transport in Porous Media, 82:2 (2010), 375–384 | DOI | MR