Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_1_a0, author = {V. A. Balashov}, title = {Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--16}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_1_a0/} }
TY - JOUR AU - V. A. Balashov TI - Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media JO - Matematičeskoe modelirovanie PY - 2018 SP - 3 EP - 16 VL - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_1_a0/ LA - ru ID - MM_2018_30_1_a0 ER -
V. A. Balashov. Direct numerical simulation of moderately rarefied gas flow within two-dimensional artificial porous media. Matematičeskoe modelirovanie, Tome 30 (2018) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2018_30_1_a0/
[1] M. Gad-el-Hak (ed.), The MEMS Handbook, CRC Press, 2002, 1332 pp. | Zbl
[2] L.J. Klinkenberg, “The Permeability Of Porous Media To Liquids And Gases”, Drilling and Production Practice, American Petroleum Institute, 1941, 200–213
[3] Porody gornye. Metody opredeleniya kollektorskih svojstv. Metod opredeleniya koehfficienta absolyutnoj gazopronicaemosti pri stacionarnoj i nestacionarnoj fil'tracii, GOST 26450.2-85
[4] C. Cercignani, Theory and application of the Boltzmann equation, Scottish Academic Press, 1975, 415 pp. | MR | Zbl
[5] M. Gad-el-Hak, “The Fluid Mechanics of Microdevices – The Freeman Scholar Lecture”, Journal of Fluids Engineering, 1999, 5–33 | DOI
[6] J.C. Maxwell, “On Stresses in Rarefied Gases Arising from Inequalities of Temperature”, Philosophical Transactions of the Royal Society of London, 170 (1879), 231–256 | DOI
[7] M.N. Kogan, Rarefied Gas Dynamics, Springer US, 1969, 515 pp.
[8] G.N. Abramovich, Prikladnaya gazovaya dinamika, v. 2, Nauka, M., 1991, 304 pp.
[9] L.G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, 1966, 816 pp. | MR
[10] G.E. Karniadakis, A. Beskok, N. Aluru, Microflows and nanoflows: fundamentals and simulation, Springer-Verlag, NY, 2005, 818 pp. | MR | Zbl
[11] Yu.V. Sheretov, Dinamika sploshnyh sred pri prostranstvenno-vremennom osrednenii, RChD, M.–Izhevsk, 2009, 400 pp.
[12] R. Deissler, “An analysis of second-order slip flow and temperature-jump boundary conditions for rarefied gases”, International Journal of Heat and Mass Transfer, 7:6 (1964), 681–694 | DOI | Zbl
[13] C. Aubert, S. Colin, “High-order boundary conditions for gaseous flows in rectangular microducts”, Microscale Thermophysical Engineering, 5:1 (2001), 41–54 | DOI
[14] S. Colin, P. Lalonde, R. Caen, “Validation of a Second-Order Slip Flow Model in Rectangular Microchannels”, Heat Transfer Engineering, 25:3 (2004), 23–30 | DOI
[15] B.N. Chetverushkin, Kinetic schemes and quasi-gasdynamic system of equations, CIMNE, Barcelona, 2008, 298 pp.
[16] T.G. Elizarova, Quasi-gas dynamic equations, Springer, Berlin–Heidelberg, 2009, 286 pp. | MR | Zbl
[17] M.V. Semenov, Yu.V. Sheretov, “Chislennoe modelirovanie dozvukovyh osesimmetrichnyh techenij gaza vblizi shara”, Vestnik TvGU. Seriya: Prikladnaya matematika, 1:3 (2006), 78–97
[18] W.-M. Zhang, G. Meng, X. Wei, “A review on slip models for gas microflows”, Microfluidics and Nanofluidics, 13:6 (2012), 845–882 | DOI | MR
[19] O.A. Shemarova, Razrabotka matematicheskih modelej i metodov rascheta processa techeniya razrezhennyh gazov pri vzaimodejstvii s napravlennymi potokami chastic, dissert. ... kand. fiz.-mat. nauk, MGTU im. N.E. Baumana, M., 2015
[20] J. Dvorkin et al., “Relevance of computational rock physics”, Geophysics, 76:5 (2011), E141–E153 | DOI
[21] A.A. Zlotnik, “On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force”, Comp. Math. and Math. Phys., 56:1 (2016), 303–319 | DOI | DOI | MR | Zbl
[22] K.S. Basniev, I.N. Kochina, V.M. Maksimov, Podzemnaya gidromekhanika, v. 2, Nedra, M., 1993, 416 pp.
[23] V.A. Balashov, “Chislennoe modelirovanie dvumernyh techenij umerenno-razrezhennogo gaza v oblastyah so slozhnoj geometriej”, Keldysh Institute preprints, 2016, 104, 24 pp.
[24] D.V. Sivuhin, Obshchij kurs fiziki, v. II, Termodinamika i molekulyarnaya fizika, Fizmatlit, M., 2003, 576 pp.
[25] S.L. Lee, J.H. Yang, “Modeling of Darcy-Forchheimer drag for fluid flow across a bank of circular cylinders”, International Journal of Heat and Mass Transfer, 40:13 (1997), 3149–3155 | DOI | Zbl
[26] W. Degruyter et al., “Synchrotron X-ray microtomography and lattice Boltzmann simulations of gas flow through volcanic pumices”, Geosphere, 6:5 (2010), 470–481 | DOI
[27] Palabos: Parallel lattice Boltzmann solver, http://www.palabos.org/
[28] F.A. Florence et al., “Improved Permeability Prediction Relations for Low-Permeability Sands”, Rocky Mountain Oil Gas Technology Symposium (2007, 16–18 April, Denver, Colorado), U.S.A. Society of Petroleum Engineers
[29] F. Civan, “Effective Correlation of Apparent Gas Permeability in Tight Porous Media”, Transport in Porous Media, 82:2 (2010), 375–384 | DOI | MR