Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_12_a7, author = {A. Yu. Morozov and D. L. Reviznikov and V. Yu. Gidaspov}, title = {kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {129--144}, publisher = {mathdoc}, volume = {30}, number = {12}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a7/} }
TY - JOUR AU - A. Yu. Morozov AU - D. L. Reviznikov AU - V. Yu. Gidaspov TI - kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters JO - Matematičeskoe modelirovanie PY - 2018 SP - 129 EP - 144 VL - 30 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_12_a7/ LA - ru ID - MM_2018_30_12_a7 ER -
%0 Journal Article %A A. Yu. Morozov %A D. L. Reviznikov %A V. Yu. Gidaspov %T kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters %J Matematičeskoe modelirovanie %D 2018 %P 129-144 %V 30 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_12_a7/ %G ru %F MM_2018_30_12_a7
A. Yu. Morozov; D. L. Reviznikov; V. Yu. Gidaspov. kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 129-144. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a7/
[1] A.A. Belov, N.N. Kalitkin, L.V. Kuzmina, “Modeling of Chemical Kinetics in Gases”, Mathematical Models and Computer Simulations, 9:1 (2017), 24–39 | DOI | Zbl
[2] R.E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, 1966 | MR | Zbl
[3] P. Eijgenraam, The Solution of Initial Value Problems Using Interval Arithmetic: Formulation and Analysis of an Algorithm, Mathematisch Centrum, Amsterdam, 1981, 185 pp. | MR | Zbl
[4] R.J. Lohner, “Enclosing the solutions of ordinary initial and boundary value problems”, Computer Arithmetic: Scientific Computation and Programming Languages, 1987, 255–286 | MR
[5] A.N. Rogalev, “Garantirovannye metody resheniia sistem obyknovennykh differentsialnykh uravnenij na osnove preobrazovaniia simvolnykh formul”, Vychislitelnye tekhnologii, 8:5 (2003), 102–116 | Zbl
[6] A.N. Rogalev, “Garantirovannye otsenki i postroenie mnozhestv dostizhimosti dlia nelinejnykh upravliaemykh sistem”, Sibirskij zhurnal nauki i tekhnologij, 2010, no. 5, 148–153
[7] K. Makino, M. Berz, “Verified Computations Using Taylor Models and Their Applications”, Numerical Software Verification 2017, conference proceedings (Heidelberg, Germany, July 22–23, 2017), Springer International Publishing AG, 2017, 3–13 | DOI | Zbl
[8] M. Berz, K. Makino, “Rigorous Reachability Analysis and Domain Decomposition of Taylor Models”, Numerical Software Verification 2017, conference proceedings (Heidelberg, Germany, July 22–23, 2017), Springer International Publishing AG, 2017, 90–97 | DOI
[9] A.N. Rogalev, “Simvolnye vychisleniia v garantirovannykh metodakh, vypolnennye na neskolkikh protsessorakh”, Vestnik NGU, «Informatsionnye tekhnologii», 4:1 (2006), 56–62 | Zbl
[10] S.P. Sharyj, Intervalnyj analiz ili metody Monte-Karlo?, Vychislitelnye tekhnologii, 12:1 (2007), 103–115
[11] B.S. Dobronets, Intervalnaia matematika, KGU, Krasnoiarsk, 2004, 219 pp.
[12] B.S. Dobronets, E.L. Roshchina, “Prilozheniia intervalnogo analiza chuvstvitelnosti”, Vychislitelnye tekhnologii, 7:1 (2002), 75–82 | Zbl
[13] V.A. Vajtiev, S.A. Mustafina, “Poisk oblastej neopredelennosti kineticheskikh parametrov matematicheskikh modelej khimicheskoj kinetiki na osnove intervalnykh vychislenik”, Vestnik IuUrGU. Seriia Matemat. modelirovanie i programmirovanie, 7:2 (2014), 99–110
[14] J.L. Bentley, “Multidimensional binary search trees used for associative searching”, Communications of the ACM, 18:9 (1975), 509–517 | DOI | Zbl
[15] J. Niesen, T. Hall, On the Global Error of Discretization Methods for Ordinary Differential Equations, Ph.D. Thesis, University of Cambridge, 2004
[16] V.I. Arnold, Obyknovennye differentsialnye uravneniia, Izhevskaia respublikanskaia tipografiia, Izhevsk, 2000, 368 pp.
[17] V. Iu. Gidaspov, N.S. Severina, Elementarnye modeli i vychislitelnye algoritmy fizicheskoj gazovoj dinamiki. Termodinamika i khimicheskaia kinetika, Uchebnoe posobie, Faktorial, M., 2014, 84 pp.
[18] J. Warnatz, U. Maas, R.W. Dibble, Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer, 2001 | Zbl
[19] V.P. Glushko, L.V. Gurvich, I.V. Weitz, et al., Thermodynamic properties of individual substances, v. 1, Hemisphere, NY–L., 1989
[20] E.A. Novikov, M.I. Golushko, “(m, 3)-metod tretego poriadka dlia zhestkikh neavtonomnykh sistem ODU”, Vychislitelnye tekhnologii, 3:3 (1998), 48–54