kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters
Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 129-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the question of simulating chemical processes with uncertainty in parameters is considered. A new approach is suggested, which consists in building a dynamic structured net based on a kd-tree, over a space formed by the interval parameters. When the algorithm is executed, during each integration step a piecewise constant polynomial function is build, interpolating the connection between the solution and the exact values of interval parameters. The algorithm has been tested on chemical kinetics problems, including combustion processes, demonstrating its efficiency and wide area of application.
Keywords: interval systems of ODE, dynamic structured grid, chemical kinetics.
Mots-clés : Lotka–Volterra model
@article{MM_2018_30_12_a7,
     author = {A. Yu. Morozov and D. L. Reviznikov and V. Yu. Gidaspov},
     title = {kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {129--144},
     publisher = {mathdoc},
     volume = {30},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a7/}
}
TY  - JOUR
AU  - A. Yu. Morozov
AU  - D. L. Reviznikov
AU  - V. Yu. Gidaspov
TI  - kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 129
EP  - 144
VL  - 30
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_12_a7/
LA  - ru
ID  - MM_2018_30_12_a7
ER  - 
%0 Journal Article
%A A. Yu. Morozov
%A D. L. Reviznikov
%A V. Yu. Gidaspov
%T kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters
%J Matematičeskoe modelirovanie
%D 2018
%P 129-144
%V 30
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_12_a7/
%G ru
%F MM_2018_30_12_a7
A. Yu. Morozov; D. L. Reviznikov; V. Yu. Gidaspov. kd-Tree based adaptive interpolation algorithm for chemical kinetics problems with interval parameters. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 129-144. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a7/

[1] A.A. Belov, N.N. Kalitkin, L.V. Kuzmina, “Modeling of Chemical Kinetics in Gases”, Mathematical Models and Computer Simulations, 9:1 (2017), 24–39 | DOI | Zbl

[2] R.E. Moore, Interval analysis, Prentice-Hall, Englewood Cliffs, 1966 | MR | Zbl

[3] P. Eijgenraam, The Solution of Initial Value Problems Using Interval Arithmetic: Formulation and Analysis of an Algorithm, Mathematisch Centrum, Amsterdam, 1981, 185 pp. | MR | Zbl

[4] R.J. Lohner, “Enclosing the solutions of ordinary initial and boundary value problems”, Computer Arithmetic: Scientific Computation and Programming Languages, 1987, 255–286 | MR

[5] A.N. Rogalev, “Garantirovannye metody resheniia sistem obyknovennykh differentsialnykh uravnenij na osnove preobrazovaniia simvolnykh formul”, Vychislitelnye tekhnologii, 8:5 (2003), 102–116 | Zbl

[6] A.N. Rogalev, “Garantirovannye otsenki i postroenie mnozhestv dostizhimosti dlia nelinejnykh upravliaemykh sistem”, Sibirskij zhurnal nauki i tekhnologij, 2010, no. 5, 148–153

[7] K. Makino, M. Berz, “Verified Computations Using Taylor Models and Their Applications”, Numerical Software Verification 2017, conference proceedings (Heidelberg, Germany, July 22–23, 2017), Springer International Publishing AG, 2017, 3–13 | DOI | Zbl

[8] M. Berz, K. Makino, “Rigorous Reachability Analysis and Domain Decomposition of Taylor Models”, Numerical Software Verification 2017, conference proceedings (Heidelberg, Germany, July 22–23, 2017), Springer International Publishing AG, 2017, 90–97 | DOI

[9] A.N. Rogalev, “Simvolnye vychisleniia v garantirovannykh metodakh, vypolnennye na neskolkikh protsessorakh”, Vestnik NGU, «Informatsionnye tekhnologii», 4:1 (2006), 56–62 | Zbl

[10] S.P. Sharyj, Intervalnyj analiz ili metody Monte-Karlo?, Vychislitelnye tekhnologii, 12:1 (2007), 103–115

[11] B.S. Dobronets, Intervalnaia matematika, KGU, Krasnoiarsk, 2004, 219 pp.

[12] B.S. Dobronets, E.L. Roshchina, “Prilozheniia intervalnogo analiza chuvstvitelnosti”, Vychislitelnye tekhnologii, 7:1 (2002), 75–82 | Zbl

[13] V.A. Vajtiev, S.A. Mustafina, “Poisk oblastej neopredelennosti kineticheskikh parametrov matematicheskikh modelej khimicheskoj kinetiki na osnove intervalnykh vychislenik”, Vestnik IuUrGU. Seriia Matemat. modelirovanie i programmirovanie, 7:2 (2014), 99–110

[14] J.L. Bentley, “Multidimensional binary search trees used for associative searching”, Communications of the ACM, 18:9 (1975), 509–517 | DOI | Zbl

[15] J. Niesen, T. Hall, On the Global Error of Discretization Methods for Ordinary Differential Equations, Ph.D. Thesis, University of Cambridge, 2004

[16] V.I. Arnold, Obyknovennye differentsialnye uravneniia, Izhevskaia respublikanskaia tipografiia, Izhevsk, 2000, 368 pp.

[17] V. Iu. Gidaspov, N.S. Severina, Elementarnye modeli i vychislitelnye algoritmy fizicheskoj gazovoj dinamiki. Termodinamika i khimicheskaia kinetika, Uchebnoe posobie, Faktorial, M., 2014, 84 pp.

[18] J. Warnatz, U. Maas, R.W. Dibble, Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer, 2001 | Zbl

[19] V.P. Glushko, L.V. Gurvich, I.V. Weitz, et al., Thermodynamic properties of individual substances, v. 1, Hemisphere, NY–L., 1989

[20] E.A. Novikov, M.I. Golushko, “(m, 3)-metod tretego poriadka dlia zhestkikh neavtonomnykh sistem ODU”, Vychislitelnye tekhnologii, 3:3 (1998), 48–54