The relaxation of complementary slackness conditions in dynamic general equilibrium models
Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 111-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we propose the description and the rationale of the heuristic approach, which can be used in applied dynamic economic models containing agents' optimization problems. Solution of these problems leads to a system containing differential and algebraic equations, inequalities and complementary slackness conditions. These conditions significantly complicate the analysis of such models even on the calibration stage. In this article we show how the natural assumption of the alternation of regimes, which are defined by a way of complementary slackness conditions resolution, leads to relations which are more regular and convenient from the point of model calibration.
Keywords: general equilibrium, dynamic models, optimality principle, bank model, complementary slackness conditions.
@article{MM_2018_30_12_a6,
     author = {S. B. Vasilyev and N. P. Pilnik and S. A. Radionov},
     title = {The relaxation of complementary slackness conditions in dynamic general equilibrium models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {111--128},
     publisher = {mathdoc},
     volume = {30},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a6/}
}
TY  - JOUR
AU  - S. B. Vasilyev
AU  - N. P. Pilnik
AU  - S. A. Radionov
TI  - The relaxation of complementary slackness conditions in dynamic general equilibrium models
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 111
EP  - 128
VL  - 30
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_12_a6/
LA  - ru
ID  - MM_2018_30_12_a6
ER  - 
%0 Journal Article
%A S. B. Vasilyev
%A N. P. Pilnik
%A S. A. Radionov
%T The relaxation of complementary slackness conditions in dynamic general equilibrium models
%J Matematičeskoe modelirovanie
%D 2018
%P 111-128
%V 30
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_12_a6/
%G ru
%F MM_2018_30_12_a6
S. B. Vasilyev; N. P. Pilnik; S. A. Radionov. The relaxation of complementary slackness conditions in dynamic general equilibrium models. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 111-128. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a6/

[1] M. Iu. Andreev, N.P. Pilnik, I.G. Pospelov, “Modelirovanie deiatelnosti sovremennoi rossiskoi bankovskoi sistemy”, Ekonomicheskii zhurnal VSHE, 13:2 (2009), 143–171

[2] M. Iu. Andreev, N.P. Pilnik, I.G. Pospelov, “Model mezhvremennogo ravnovesiia ekonomiki Respubliki Kazakhstan”, Trudy MFTI, 5:4 (2013), 62–78 | Zbl

[3] M.Iu. Andreev, N.P. Pilnik, I.G. Pospelov, “Silnyi magistralnyi effect v modeli ratsionalnykh ozhidani sovremennoi bankovskoi sistemy Rossii”, Zhurnal Novoi ekonomicheskoi assotsiatsii, 1:2 (2009), 70–84

[4] S.B. Vasilev, N.P. Pilnik, “Model bankovskoi sistemy SSHA: opisanie perekhodnykh protsessov v techenie 1970–2010-kh godov”, Trudy MFTI, 6:4 (2014), 4–16

[5] J. Gali, J. Lopez-Salido, J. Valles, “Understanding the Effects of Government Spending on Consumption”, Journal of the European Economic Association, 5:1 (2007), 227–270 | DOI

[6] L. Christiano, M. Eichenbaum, S. Rebelo, When Is the Government Spending Multiplier Large?, Journal of Political Economy, 119:1 (2011), 78–121 | DOI | MR

[7] F. Smets, R. Wouters, “Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach”, American Economic Review, 97:3 (2007), 586–606 | DOI | MR

[8] A.E. Hoerl, R.W. Kennard, “Ridge regression: biased estimation for nonorthogonal problems”, Technometrics, 12:1 (1970), 55–67 | DOI | MR | Zbl

[9] R. Tibshirani, “Regression shrink age and selection via the LASSO”, Journal of the Royal Statistical Society: Series B, 58 (1996), 267–288 | MR | Zbl

[10] V. Vapnik, Statistical Learning Theory, John Wiley, New York, 1998 | MR

[11] J. Fan, R.Z. Li, “Variable selection via nonconcave penalized likelihood and its oracle properties”, Journal of American Statistical Association, 96 (2001), 1348–1360 | DOI | MR | Zbl

[12] M. Yuan, Y. Lin, “Model selection and estimation in regression with grouped variables”, Journal of the Royal Statistical Society: Series B, 68 (2006), 49–67 | DOI | MR | Zbl

[13] T.L. Zhuravleva, M.A. Leonov, “Bankovskaia sistema Rossii v poslednie gody: obshchii I regionalnyi vzgliad”, Nauchno-issledovatelskii finansovyi institute. Finansovyi zhurnal, 28:6 (2015), 47–58

[14] M.S. Dedova, N.P. Pilnik, I.G. Pospelov, “Opisanie potrebnosti v likvidnosti so storony rossiiskoi bankovskoi sistemy na osnove statistiki oborotov”, Zhurnal novoi ekonomicheskoi assotsiatsii, 24:4 (2014), 87–110

[15] D.V. Shvandr, O.V. Kontsevich, “Upravlenie strukturnym profitsitom likvidnosti bankovskoi sistemy”, Nauchno-issledovatelskii finansovyi institute. Finansovyi zhurnal, 37:3 (2017), 57–70

[16] N.P. Pilnik, I.G. Pospelov, “O estestvennykh terminalnykh usloviiakh v modeliakh mezhvremennogo ravnovesiia”, Ekonomicheskii zhurnal VSHE, 11:1 (2007), 1–33

[17] M. Iu. Andreev, I.G. Pospelov, I.I. Pospelova, M.A. Khokhlov, Tekhnologiia modelirovaniia ekonomiki i model sovremennoi ekonomiki Rossii, MIFI, M., 2007, 262 pp.

[18] A.A. Petrov, I.G. Pospelov, A.A. Shananin, From Gosplan to Market Economy: Mathematical Analysis of the Evolution of the Russian Economic Structures, The Edwin Mellen Press, Lewiston–Queenston-Lampeter, NY, USA, 1999, 393 pp.