Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_12_a5, author = {D. A. Balakin and Yu. P. Pyt'ev}, title = {Measurement reduction in the presence of subjective information}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {84--110}, publisher = {mathdoc}, volume = {30}, number = {12}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a5/} }
D. A. Balakin; Yu. P. Pyt'ev. Measurement reduction in the presence of subjective information. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 84-110. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a5/
[1] T. Terano, K. Asano, M. Sugeno (red.), Prikladnye nechetkie sistemy, Mir, M., 1993, 368 pp.
[2] K. Tanaka, “Resume on dealing with uncertainty/ambiguity in conjunction with knowledge engineering”, Fuzzy Set and Possibility Theory. Recent Developments, Pergamon Press, NY., 1982, 633 pp.
[3] Yu.P. Pyt'ev, “Modeling of Subjective Judgments Made by a Researcher-Modeler about the Model of the Research Object”, Math. Mod. and Comp. Simul., 5:6 (2013), 538–557 | DOI | MR | Zbl
[4] Iu.P. Pyt'ev, Veroiatnost, vozmozhnost i subiektivnoe modelirovanie v nauchnykh issledovaniiakh. Matematicheskie, empiricheskie osnovy, prilozheniia, Fizmatlit, M., 2017, 280 pp.
[5] Iu. P. Pyt'ev, Vozmozhnost kak alternativa veroiatnosti, 2 izd., pererab. i dopoln., Fizmatlit, M., 2016, 600 pp.
[6] A.L. Tulupev, S.I. Nikolenko, A.V. Sirotkin, Baiesovskie seti: Logiko-veroiatnostnyi podkhod, Nauka, Saint Petersburg, 2006, 607 pp.
[7] R.G. Cowell et al., Probabilistic Networks and Expert Systems, Springer-Verlag, New York, 1999, 324 pp. | MR | Zbl
[8] C. Antoniou et al., “Subjective Bayesian beliefs”, Journal of Risk and Uncertainty, 50:1 (2015), 35–54 | DOI | MR
[9] M. Goldstein, “Subjective Bayesian Analysis: Principles and Practice”, Bayesian Analysis, 1 (2006), 403–420 | DOI | MR | Zbl
[10] D. Williamson, M. Goldstein, “Posterior Belief Assessment: Extracting Meaningful Subjective Judgements from Bayesian Analyses with Complex Statistical Models”, Bayesian Analysis, 10:4 (2015), 877–908 | DOI | MR | Zbl
[11] G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, NJ, 1976, 302 pp. | MR | Zbl
[12] J. Kohlas, P.-A. Monney, A Mathematical Theory of Hints: An Approach to the Dempster–Shafer Theory of Evidence, Springer-Verlag, Berlin–Heidelberg, 1995, 422 pp. | MR | Zbl
[13] R.R. Yager, N. Alajlan, “Dempster-Shafer belief structures for decision making under uncertainty”, Knowledge-Based Systems, 80 (2015), 58–66 | DOI
[14] A. Josang, “A Logic for Uncertain Probabilities”, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9:3 (2001), 279–311 | DOI | MR | Zbl
[15] A. Josang, “Multi-Agent Preference Combination using Subjective Logic”, 11th Workshop on Preferences and Soft Constraints (SofT'11) (Perugia, 2011)
[16] A. Josang, P.C.G. Costa, “Determining Model Correctness for Situations of Belief Fusion”, 16th International Conference on Information Fusion (FUSION 2013) (Istanbul, 2013)
[17] T. Muller, D. Wang, A. Josang, “Information Theory for Subjective Logic”, Modeling Decisions for Artificial Intelligence, Springer Nature, 2015, 230–242 | DOI | MR | Zbl
[18] A. Josang, Subjective Logic: A Formalism for Reasoning Under Uncertainty, Springer International Publishing, Heidelberg, 2016, 337 pp. | Zbl
[19] A. Josang, L. Kaplan, “Principles of subjective networks”, 19th International Conference on Information Fusion (FUSION), IEEE, 07/2016, 1292–1299
[20] R.R. Yager, “On the Dempster-Shafer framework and new combination rules”, Information Sciences, 41:2 (1987), 93–137 | DOI | MR | Zbl
[21] T. Inagaki, “Interdependence between safety-control policy and multiple-sensor schemes via Dempster-Shafer theory”, IEEE Transactions on Reliability, 40:2 (1991), 182–188 | DOI | Zbl
[22] T. Denoeux, “Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence”, Artificial Intelligence, 172:2/3 (2008), 234–264 | DOI | MR | Zbl
[23] M.E. Cattaneo, “Belief functions combination without the assumption of Independence of the information sources”, Intern. J. of Approximate Reasoning, 52:3 (2011), 299–315 | DOI | MR | Zbl
[24] D. Dubois, H. Prade, “On the Combination of Evidence in Various Mathematical Frameworks”, Reliability Data Collection and Analysis, v. 3, Springer Nature, Dordrecht, 1992, 213–241 | DOI
[25] A. Martin, C. Osswald, J. Dezert, “General combination rules for qualitative and quantitative beliefs”, J. Adv. Inform. Fusion, 3:2 (2008), 67–89
[26] L. Zadeh, “A simple view of the Dempster-Shafer Theory of Evidence and its implication for the rule of combination”, The AI Magazine, 7:2 (1986), 85–90
[27] A. Bronevich, I. Rozenberg, “The choice of generalized Dempster-Shafer rules for aggregating belief functions”, International Journal of Approximate Reasoning, 56 (2015), 122–136 | DOI | MR | Zbl
[28] A. Josang, R. Hankin, “Interpretation and Fusion of Hyper Opinions in Subjective Logic”, 15th International Conference on Information Fusion (FUSION 2012) (Singapore, 2012)
[29] M.A. Klopotek, S.T. Wierzchon, “Empirical Models for the Dempster-Shafer-Theory”, Belief Functions in Business Decisions, Springer Nature, Heidelberg, 2002, 62–112 | DOI
[30] P. Wang, “A Defect in Dempster-Shafer Theory”, Uncertainty Proceedings 1994, Morgan Kaufmann Publishers, San Francisco, CA, 1994, 560–566 | DOI
[31] Iu.P. Pyt'ev, Metody matematicheskogo modelirovaniia izmeritelno-vychislitelnykh sistem, 3 ed., revised and extended, Fizmatlit, M., 2012, 428 pp.
[32] C.R. Rao et al., Linear Models and Generalizations: Least Squares and Alternatives, 3rd ed., Springer-Verlag, Berlin, 2007, 572 pp. | MR
[33] S. V. Huffel, P. Lemmerling (eds.), Total Least Squares and Errors-in-Variables Modeling: Analysis, Algorithms and Applications, 1st ed., Springer Nature, Dordrecht, the Netherlands, 2002, 397 pp. | MR
[34] A.N. Tikhonov, V.Y. Arsenin, Solutions of ill-posed problems, Winston, New York, 1977, 258 pp. | MR | Zbl
[35] A.N. Tikhonov et al., Numerical Methods for the Solution of Ill-Posed Problems, Springer Netherlands, Dordrecht, 1995, 254 pp. | MR
[36] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, 1st ed., Springer Nature, Dordrecht, the Netherlands, 1996, 321 pp. | MR
[37] V.A. Morozov, Regularization Methods for Ill Posed Problems, CRC Press, Boca Raton, FL, 1993, 257 pp. | MR | Zbl
[38] U. Amato, W. Hughes, “Maximum entropy regularization of Fredholm integral equations of the first kind”, Inverse Problems, 7:6 (1991), 793–808 | DOI | MR | Zbl
[39] A.S. Leonov, “A generalization of the maximal entropy method for solving ill-posed problems”, Siberian Mathematical Journal, 41:4 (2000), 716–724 | DOI | MR | Zbl
[40] A.I. Chulichkov, B. Yuan, “The possibility of estimating the values of a function at given points of the measurement results of a finite number of its linear functionals”, Moscow University Physics Bulletin, 69:3 (2014), 218–222 | DOI | MR
[41] Iu.P. Pyt'ev, Matematicheskie metody interpretatsii eksperimenta, Vysshaia shkola, M., 1989, 352 pp.
[42] D.A. Balakin, Yu.P. Pyt'ev, “A Comparative Analysis of Reduction Quality for Probabilistic and Possibilistic Measurement Models”, Moscow University Physics Bulletin, 72:2 (2017), 101–112 | DOI
[43] D.A. Balakin, Iu.M. Nagorny, Iu.P. Pyt'ev, “Empiricheskaia verifikatsiia, vosstanovlenie i korrektsiia subieektivno modeli”, Beskonechnomerny analiz, stokhastika, matematicheskoe modelirovanie: novye zadachi i metody. Problemy matematicheskogo i estestvennonauchnogo obrazovaniia, Sb. st. Mezhd. konf., RUDN University, M., 2015, 190–195
[44] D.A. Balakin, Iu.P. Pyt'ev, “Empiricheskaia verifikatsiia, vosstanovlenie i korrektsiia subieektivno modeli issleduemogo obieekta v teorii izmeritelno-vychislitelnykh preobrazovatele”, XIII Vserossiskaia nauchno-tekhnicheskaia konferentsiia «Sostoianie i problemy izmereni», Sbornik materialov, Bauman Moscow State Technical University, M., 2015, 42–45
[45] D.A. Balakin, Iu.P. Pyt'ev, “Subieektivnaia interpretatsiia dannykh izmereni, polychennykh pri chastichno izvestno modeli izmereni”, Inzhenerno-fizicheskie problemy novo tekhniki. Sbornik materialov XII Vserossiskogo soveshchaniia-seminara, Bauman Moscow State Technical University, M., 2016, 45–48
[46] Yu.P. Pyt'ev, “Mathematical methods of subjective modeling in scientific research. 1. Mathematical and empirical basis”, Moscow University Physics Bulletin, 73:1 (2018), 1–16 | DOI
[47] Yu.P. Pyt'ev, “Mathematical methods of subjective modeling in scientific research. 2. Applications”, Moscow University Physics Bulletin, 73:2 (2017), 102
[48] D.A. Balakin, “The Empirical Construction of Mathematical Models of Measuring and Optimal Computing Transducers”, Moscow University Physics Bulletin, 72:2 (2017), 168–175 | DOI