Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_12_a3, author = {A. B. Babaev and A. K. Murtazaev}, title = {Calculation of relative variance of the magnetization and susceptibility in a disordered {Ising} model. {Results} of {Monte} {Carlo} simulation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {55--62}, publisher = {mathdoc}, volume = {30}, number = {12}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a3/} }
TY - JOUR AU - A. B. Babaev AU - A. K. Murtazaev TI - Calculation of relative variance of the magnetization and susceptibility in a disordered Ising model. Results of Monte Carlo simulation JO - Matematičeskoe modelirovanie PY - 2018 SP - 55 EP - 62 VL - 30 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_12_a3/ LA - ru ID - MM_2018_30_12_a3 ER -
%0 Journal Article %A A. B. Babaev %A A. K. Murtazaev %T Calculation of relative variance of the magnetization and susceptibility in a disordered Ising model. Results of Monte Carlo simulation %J Matematičeskoe modelirovanie %D 2018 %P 55-62 %V 30 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_12_a3/ %G ru %F MM_2018_30_12_a3
A. B. Babaev; A. K. Murtazaev. Calculation of relative variance of the magnetization and susceptibility in a disordered Ising model. Results of Monte Carlo simulation. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 55-62. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a3/
[1] S. Wiseman, E. Domany, “Self-averaging, distribution of pseudocritical temperatures, and finite size scaling in critical disordered systems”, Phys. Rev. E, 58 (1998), 2938 | DOI
[2] S. Wiseman, E. Domany, “Finite-Size Scaling and Lack of Self-Averaging in Critical Disordered Systems”, Phys. Rev. Lett., 81 (1998), 22 | DOI
[3] A. Aharony, A.B. Harris, S. Wiseman, “Critical Disordered Systems with Constraints and the Inequality $v > 2/d$”, Phys. Rev. Lett., 81 (1998), 252 | DOI
[4] P.-E. Berche, Ch. Chatelain, B. Berche, W. Janke, “Bond dilution in the 3D Ising model: a Monte Carlo study”, European Physical J. B, 38 (2004), 463 | DOI
[5] M.I. Marques, J.A. Gonzalo, J. Iniguez, “Self-averaging of random and thermally disordered diluted Ising systems”, Phys. Rev. E, 60 (1999), 2394 | DOI
[6] M.I. Marques, J.A. Gonzalo, J. Iniguez, “Universality class of thermally diluted Ising systems at criticality”, Phys. Rev. E, 62 (2000), 191 | DOI
[7] V.V. Prudnikov, P.V. Prudnikov, A.A. Fedorenko, “Field-theory approach to critical behaviour of systems with long-range correlated defects”, Phys. Rev. B, 62 (2000), 8777 | DOI | MR
[8] A.Z. Patashinskii, V.A. Pokrovskii, Fluktuatsionnaia teoriia fazovykh perekhodov, Nauka, M., 1982, 223 pp.
[9] A.K. Murtazaev, A.B. Babaev, “Phase Transitions in the Two-Dimensional Ferro- and Anti-ferromagnetic Potts Models on a Triangular Lattice”, Journal of Experimental and Theoretical Physics, 115:6 (2012), 1042 | DOI
[10] A.K. Murtazaev, A.B. Babaev, G.Y. Aznaurova, “Investigation of the Critical Properties in the 3d Site-Diluted Potts Model”, Solid State Phenomena, 152–153 (2009), 571 | DOI
[11] A.K. Murtazaev, A.B. Babaev, G.Y. Aznaurova, “Phase Transitions in 3D Site-Diluted Potts Model with Spin States q=4”, Solid State Phenomena, 168–169 (2011), 357
[12] A.K. Murtazaev, A.B. Babaev, “Tricritical Point of the Three-Dimensional Potts Model (q=4) with Quenched Nonmagnetic Disorder”, JETP Letters, 99 (2014), 535 | DOI
[13] A.K. Murtazaev, I.K. Kamilov, A.B. Babaev, “Critical behavior of spin systems with quenched disorder”, J. of Magnetism and Magnetic Materials, 300 (2006), 538
[14] V.V. Prudnikov, P.V. Prudnikov, A.N. Vakilov, A.S. Krinitsyn, “Computer Simulation of the Critical Behavior of 3D Disordered Ising Model”, Journal of Experimental and Theoretical Physics, 105:2 (2007), 371 | DOI | MR
[15] V.S. Dotsenko, “Critical phenomena and quenched disorder”, Physics-Uspekhi, 38 (1995), 457 | DOI | DOI
[16] U. Wolff, “Collective Monte Carlo Updating for spin systems”, Phys. Rev. Lett., 62 (1989), 361 | DOI
[17] J.-S. Wang, R.H. Swendsen, “Cluster Monte Carlo algorithms”, Phys. A, 167 (1990), 565 | DOI | MR
[18] A.K. Murtazaev, A.B. Babaev, “Phase transitions and critical phenomena in a three-dimensional site-diluted Potts model”, J. of Magnetism and Magnetic Materials, 324 (2012), 3870 | DOI
[19] A.B. Babaev, A.K. Murtazaev, “Computer simulation of the critical behavior in spin models with nonmagnetic impurities”, Low Temperature Physics, 41 (2015), 608 | DOI
[20] P. Peczak, A.M. Ferrenberg, D.P. Landau, “High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet”, Phys. Rev. B, 43 (1991), 6087 | DOI
[21] O.A. Vasilyev, L.N. Shchur, “Universality of the Ratio of the Critical Amplitudes of the Magnetic Susceptibility in a Two-Dimensional Ising Model with Nonmagnetic Impurities”, Journal of Experimental and Theoretical Physics, 90:6 (2000), 964 | DOI