Comparison of data assimilation methods into hydrodynamic models of ocean circulation
Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 39-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two different assimilation methods are compared, namely, early proposed author’s method of generalized Kalman filtration (GKF) and standard objective ensemble interpolation method (EnOI) that is a partial case of extended Kalman filter scheme (EnKF). The methods are compared with respect to various criteria, in particular, with respect to minimum of the forecast error and with respect of a posterior error over a given timeinterval. As observed data we used the Archiving Validating and Interpolating Satellite Observation (AVISO) i.e. altimetry data, and as a base numerical model of the ocean circulation we chose the Hybrid Circulation Ocean Model (HYCOM). It is shown that the method GKF has a number of advantages comparing with the method EnOI. The computations of numerical experiments with different assimilation method are analyzed and their results are compared with the control experiments i.e. the HYCOM run without assimilation. The computation results are also verified with independent observations. The conclusion is made that the studied assimilation methods can be applied for the forecasting of the environment.
Keywords: ocean modelling, generalized Kalman filter, satellite altimetry data.
Mots-clés : data assimilation, ensemble interpolation method
@article{MM_2018_30_12_a2,
     author = {K. P. Belyaev and A. A. Kuleshov and I. N. Smirnov and C. A. S. Tanajura},
     title = {Comparison of data assimilation methods into hydrodynamic models of ocean circulation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {39--54},
     publisher = {mathdoc},
     volume = {30},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a2/}
}
TY  - JOUR
AU  - K. P. Belyaev
AU  - A. A. Kuleshov
AU  - I. N. Smirnov
AU  - C. A. S. Tanajura
TI  - Comparison of data assimilation methods into hydrodynamic models of ocean circulation
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 39
EP  - 54
VL  - 30
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_12_a2/
LA  - ru
ID  - MM_2018_30_12_a2
ER  - 
%0 Journal Article
%A K. P. Belyaev
%A A. A. Kuleshov
%A I. N. Smirnov
%A C. A. S. Tanajura
%T Comparison of data assimilation methods into hydrodynamic models of ocean circulation
%J Matematičeskoe modelirovanie
%D 2018
%P 39-54
%V 30
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_12_a2/
%G ru
%F MM_2018_30_12_a2
K. P. Belyaev; A. A. Kuleshov; I. N. Smirnov; C. A. S. Tanajura. Comparison of data assimilation methods into hydrodynamic models of ocean circulation. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 39-54. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a2/

[1] G.I. Marchuk, Chislennoe reshenie zadach dinamiki atmosfery i okeana, Gidrometizdat, L., 1974, 303 pp.

[2] A.S. Sarkisian, Chislennyi analiz i prognoz morskikh techenii, Gidrometizdat, L., 1977, 182 pp.

[3] V.I. Agoshkov, V.M. Ipatova, V.B. Zalesnyi, E.I. Parmuzin, V.P. Shutyaev, “Problems of variational assimilation of observational data for oceangeneral circulation models and methods for their solution”, Izvestiya, Atmospheric and Oceanic Physics, 46:6 (2010), 677–712 | DOI

[4] L.S. Gandin, Obieektivnyi analiz meteorologicheskikh polei, Gidrometizdat, L., 1963, 282 pp.

[5] M. Ghil, P. Malnotte-Rizzoli, “Data assimilation in meteorology and oceanography”, Adv. Geophys., 33 (1991), 141–266 | DOI

[6] S. Cohn, “An introduction to estimation theory”, J. Meteor. Soc. Japan, 75 (1997), 257–288 | DOI

[7] C.A.S. Tanajura, K. Belyaev, “A sequential data assimilation method based on the properties of a diffusion-type process”, Appl. Math. Model., 33:5 (2009), 2165–2174 | DOI | MR | Zbl

[8] K. Belyaev, C.A.S. Tanajura, J.J. O'Brien, “Application of the Fokker-Planck equation to data assimilation into hydrodynamical models”, J. Math. Sciences, 99:4 (2000), 1393–1402 | DOI | MR | Zbl

[9] K.P. Belyaev, A.A. Kuleshov, N.P. Tuchkova, C.A.S. Tanajura, “A correction method for dynamic model calculations using observational data and its application in Oceanography”, Mathematical Models and Computer Simulations, 8:4 (2016), 391–400 | DOI | MR

[10] K. Belyaev, A. Kuleshov, N. Tuchkova, C.A.S. Tanajura, “An optimal data assimilation method and its application to the numerical simulation of the ocean dynamics”, Mathematical and Computer Modelling of Dynamical Systems, 24:1 (2018), 12–25 | DOI | MR

[11] C. Lorenc, N.E. Bowler, A.M. Clayton, S.R. Pring, D. Fairbairn, “Comparison of Hybrid-4DEnVar and Hybrid-4DVar data assimilation methods for Global NW”, Mon. Wea. Rev., 134 (2015), 212–229 | DOI | MR

[12] R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic-Cartesianco-ordinates”, Ocean Model., 2002, no. 4, 55–88 | DOI

[13] K. Belyaev, C.A.S. Tanajura, N. Tuchkova, “Comparison of Argo drifter data assimilation methods for hydrodynamic models”, Oceanology, 52 (2012), 523–615 | DOI

[14] M.N. Kaurkin, R.A. Ibrayev, K.P. Belyaev, “Data assimilation in the ocean circulation model of high spatial resolution using the methods of parallel programming”, Russian Meteorology and Hydrology, 41:7 (2016), 479–486 | DOI

[15] C.A.S. Tanajura, L.N. Lima, K.P. Belyaev, “Assmilation of sea level anomalies data into Hybrid Coordinate Ocean Model (HYCOM) over the Atlantic Ocean”, Oceanology, 55:5 (2015), 667–678 | DOI | DOI

[16] G. Evensen, Data Assimilation, the Ensemble Kalman Filter, 2nd ed., Springer, Berlin, 2009, 307 pp. | MR

[17] Vl.V. Voevodin, S.A. Zhumatii, S.I. Sobolev i dr., “Praktika superkompiutera «Lomonosov»”, Otkrytye sistemy, 2012, no. 7, 36–39

[18] J.I. Antonov, D. Seidov, T.P. Boyer et al., World Ocean Atlas 2009, ed. S. Levitus, U.S. Government Printing Office, Washington, 2010, 184 pp.

[19] E. Kalnay, Atmospheric modeling, data assimilation and predictability, Cambridge University Press, New York, 2002, 364 pp.