The explicit splitting scheme for Maxwell's equations
Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 17-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a new explicit scheme for the numerical integration of Maxwell's equations in isotropic and anisotropic dielectrics and conductors, as well as in the plasma in the case of the Vlasov–Maxwell system. In this scheme, the electric and magnetic fields are calculated in the same time points in the same spatial grid nodes, and a splitting in spatial directions and physical processes has been used. Scheme is monotonic and has 2nd order accuracy in time and 3rd order accuracy in the spatial variables. The presented scheme allows us to use a much larger step of time integration in modeling the propagation of low-frequency signals in the ionosphere than the widely used method of finite differences in the time domain for the same accuracy.
Keywords: Maxwell's equations, splitting scheme, numerical integration.
@article{MM_2018_30_12_a1,
     author = {I. V. Mingalev and O. V. Mingalev and O. I. Ahmetov and Z. V. Suvorova},
     title = {The explicit splitting scheme for {Maxwell's} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {17--38},
     publisher = {mathdoc},
     volume = {30},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a1/}
}
TY  - JOUR
AU  - I. V. Mingalev
AU  - O. V. Mingalev
AU  - O. I. Ahmetov
AU  - Z. V. Suvorova
TI  - The explicit splitting scheme for Maxwell's equations
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 17
EP  - 38
VL  - 30
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_12_a1/
LA  - ru
ID  - MM_2018_30_12_a1
ER  - 
%0 Journal Article
%A I. V. Mingalev
%A O. V. Mingalev
%A O. I. Ahmetov
%A Z. V. Suvorova
%T The explicit splitting scheme for Maxwell's equations
%J Matematičeskoe modelirovanie
%D 2018
%P 17-38
%V 30
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_12_a1/
%G ru
%F MM_2018_30_12_a1
I. V. Mingalev; O. V. Mingalev; O. I. Ahmetov; Z. V. Suvorova. The explicit splitting scheme for Maxwell's equations. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 17-38. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a1/

[1] Yee Kane, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14 (1966), 302–307 | DOI | Zbl

[2] J.J. Simpson, “Current and future applications of 3-D global Earth-ionospheric models based on the full-vector Maxwell's equations FDTD method”, Surveys Geophys, 30 (2009), 105–130 | DOI

[3] J.J. Simpson, A. Taflove, “A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz”, IEEE Transactions on Antennas and Propagation, 55:6 (2007), 1582–1590 | DOI

[4] D.L. Paul, C.J. Railton, “Spherical ADI FDTD method with application to propagation in the Earth ionosphere cavity”, IEEE Transactions on Antennas and Propagation, 60:1 (2012), 310–317 | DOI | MR | Zbl

[5] Y. Yu, J.J. Simpson, “An collocated 3-D FDTD model of electromagnetic wave propogation in magnetized cold plasma”, IEEE Transactions on Antennas and Propagation, 58:2 (2010), 469–478 | DOI | MR | Zbl

[6] A.N. Semenov, A.P. Smirnov, “Chislennoe modelirovanie uravnenii Maksvella s dispersnymi materialami”, Matematicheskoe modelirovanie, 25:12 (2013), 19–32

[7] A.G. Kulikovskii, N.V. Pogorelov, A.Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2012, 656 pp.

[8] D.V. Bisikalo, A.G. Zhilkin, A.A. Boiarchuk, Gazodinamika tesnykh dvoinykh zvezd, Fizmatlit, M., 2013, 632 pp.

[9] V.M. Kovenia, N.N. Ianenko, Metod rasshchepleniia v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981

[10] K.V. Viaznikov, V.F. Tishkin, A.P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poriadka approksimatsii dlia sistem uravnenii giperbolicheskogo tipa”, Matem. Mod., 1:5 (1989), 95–120 | Zbl

[11] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357 | DOI | MR | Zbl

[12] P.K. Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws”, SIAM J. Numer. Anal., 21 (1984), 995 | DOI | MR | Zbl

[13] O.M. Belotserkovskii, V.A. Gushchin, V.N. Kon'shin, “The splitting method for investigating flows of a stratified liquid with a free surface”, Comp. Math. and Math. Phys., 27:2 (1987), 181–191 | DOI | MR | Zbl

[14] O.M. Belotserkovskii, L.M. Kraginskii, A.M. Oparin, “Numerical Simulation of ThreeDimensional Flows in a Stratified Atmosphere Caused by Strong Large-Scale Disturbances”, Comp. Math. and Math. Phys., 43:11 (2003), 1657–1670 | MR | Zbl

[15] V.S. Mingalev, I.V. Mingalev, O.V. Mingalev, A.M. Oparin, K.G. Orlov, “Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid”, Comp. Math. and Math. Phys., 50:5 (2010), 877–899 | DOI | MR | Zbl

[16] A.N. Tihonov, A.A. Samarskii, Uravneniia matematicheskoi fiziki, 5-e izd., Nauka, M., 1977

[17] B.S. Svetov, Osnovy geoelektriki, Izd-vo LKI, M., 2008