Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_12_a1, author = {I. V. Mingalev and O. V. Mingalev and O. I. Ahmetov and Z. V. Suvorova}, title = {The explicit splitting scheme for {Maxwell's} equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {17--38}, publisher = {mathdoc}, volume = {30}, number = {12}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a1/} }
TY - JOUR AU - I. V. Mingalev AU - O. V. Mingalev AU - O. I. Ahmetov AU - Z. V. Suvorova TI - The explicit splitting scheme for Maxwell's equations JO - Matematičeskoe modelirovanie PY - 2018 SP - 17 EP - 38 VL - 30 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_12_a1/ LA - ru ID - MM_2018_30_12_a1 ER -
I. V. Mingalev; O. V. Mingalev; O. I. Ahmetov; Z. V. Suvorova. The explicit splitting scheme for Maxwell's equations. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 17-38. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a1/
[1] Yee Kane, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media”, IEEE Transactions on Antennas and Propagation, 14 (1966), 302–307 | DOI | Zbl
[2] J.J. Simpson, “Current and future applications of 3-D global Earth-ionospheric models based on the full-vector Maxwell's equations FDTD method”, Surveys Geophys, 30 (2009), 105–130 | DOI
[3] J.J. Simpson, A. Taflove, “A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz”, IEEE Transactions on Antennas and Propagation, 55:6 (2007), 1582–1590 | DOI
[4] D.L. Paul, C.J. Railton, “Spherical ADI FDTD method with application to propagation in the Earth ionosphere cavity”, IEEE Transactions on Antennas and Propagation, 60:1 (2012), 310–317 | DOI | MR | Zbl
[5] Y. Yu, J.J. Simpson, “An collocated 3-D FDTD model of electromagnetic wave propogation in magnetized cold plasma”, IEEE Transactions on Antennas and Propagation, 58:2 (2010), 469–478 | DOI | MR | Zbl
[6] A.N. Semenov, A.P. Smirnov, “Chislennoe modelirovanie uravnenii Maksvella s dispersnymi materialami”, Matematicheskoe modelirovanie, 25:12 (2013), 19–32
[7] A.G. Kulikovskii, N.V. Pogorelov, A.Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2012, 656 pp.
[8] D.V. Bisikalo, A.G. Zhilkin, A.A. Boiarchuk, Gazodinamika tesnykh dvoinykh zvezd, Fizmatlit, M., 2013, 632 pp.
[9] V.M. Kovenia, N.N. Ianenko, Metod rasshchepleniia v zadachakh gazovoi dinamiki, Nauka, Novosibirsk, 1981
[10] K.V. Viaznikov, V.F. Tishkin, A.P. Favorskii, “Postroenie monotonnykh raznostnykh skhem povyshennogo poriadka approksimatsii dlia sistem uravnenii giperbolicheskogo tipa”, Matem. Mod., 1:5 (1989), 95–120 | Zbl
[11] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357 | DOI | MR | Zbl
[12] P.K. Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws”, SIAM J. Numer. Anal., 21 (1984), 995 | DOI | MR | Zbl
[13] O.M. Belotserkovskii, V.A. Gushchin, V.N. Kon'shin, “The splitting method for investigating flows of a stratified liquid with a free surface”, Comp. Math. and Math. Phys., 27:2 (1987), 181–191 | DOI | MR | Zbl
[14] O.M. Belotserkovskii, L.M. Kraginskii, A.M. Oparin, “Numerical Simulation of ThreeDimensional Flows in a Stratified Atmosphere Caused by Strong Large-Scale Disturbances”, Comp. Math. and Math. Phys., 43:11 (2003), 1657–1670 | MR | Zbl
[15] V.S. Mingalev, I.V. Mingalev, O.V. Mingalev, A.M. Oparin, K.G. Orlov, “Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid”, Comp. Math. and Math. Phys., 50:5 (2010), 877–899 | DOI | MR | Zbl
[16] A.N. Tihonov, A.A. Samarskii, Uravneniia matematicheskoi fiziki, 5-e izd., Nauka, M., 1977
[17] B.S. Svetov, Osnovy geoelektriki, Izd-vo LKI, M., 2008