The simulation of the electron-phonon interaction in silicon
Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The processes of charge transfer in semiconductors are considered. The model is constructed on the basis of quantum kinetic equations for the distribution functions of conduction electrons and holes of the valence band in the phase space of coordinates and quasimomenta. Scattering of charge carriers is modeled by the statistical particle method. The basic processes of electron scattering by lattice nonidealities are considered. The calculations of the electron drift velocity in pure and doped silicon are presented.
Keywords: kinetic equations, particle method, scattering frequency, drift velocity.
@article{MM_2018_30_12_a0,
     author = {A. V. Berezin and Yu. A. Volkov and M. B. Markov and I. A. Tarakanov},
     title = {The simulation of the electron-phonon interaction in silicon},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {30},
     number = {12},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_12_a0/}
}
TY  - JOUR
AU  - A. V. Berezin
AU  - Yu. A. Volkov
AU  - M. B. Markov
AU  - I. A. Tarakanov
TI  - The simulation of the electron-phonon interaction in silicon
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 3
EP  - 16
VL  - 30
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_12_a0/
LA  - ru
ID  - MM_2018_30_12_a0
ER  - 
%0 Journal Article
%A A. V. Berezin
%A Yu. A. Volkov
%A M. B. Markov
%A I. A. Tarakanov
%T The simulation of the electron-phonon interaction in silicon
%J Matematičeskoe modelirovanie
%D 2018
%P 3-16
%V 30
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_12_a0/
%G ru
%F MM_2018_30_12_a0
A. V. Berezin; Yu. A. Volkov; M. B. Markov; I. A. Tarakanov. The simulation of the electron-phonon interaction in silicon. Matematičeskoe modelirovanie, Tome 30 (2018) no. 12, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2018_30_12_a0/

[1] A.I. Anselm, Vvedenie v teoriiu poluprovodnikov, Nauka, M., 1978, 616 pp.

[2] M.V. Fischetti, W.G. Vandenberghe, Edvanced Physics of Electron. Transport in Semiconductors and Nanostructures, Springer, 2016, 474 pp.

[3] P. Yu, M. Cardona, Fundamentals of Semiconductors, Springer Science Business Media, 2010, 795 pp.

[4] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, McGraw-Hill Inc., 1981

[5] M.V. Fischetti, “Monte Carlo simulation of transport in technologically significant semi-conductors of the diamond and zinc-blende structures”, IEEE Trans. Electron Devices, 38 (1991), 634 | DOI

[6] X. Wang, V. Chandarmouli, C.M. Mazar, A.F. Tasch, “Simulation program suitable for hot carrier studies: An efficient multiband Monte Carlo model using both full and analytic band structure description for silicon”, J. Appl. Phys., 73 (1993), 3339 | DOI

[7] C. Jacoboni, L. Reggiani, “The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials”, Rev. Mod. Phys., 55:3 (1983), 645 | DOI

[8] M.V. Fischetti, “Monte Carlo solution to the problem of high-field electron heating in SiO2”, Phys. Rev. Letters, 53 (1984), 1755–1758 | DOI

[9] M.V. Fischetti., S.E. Laux, “Monte Carlo analysis of electron transport in small semiconductor devices including band structure and space-charge effects”, Phys. Rev. B, 38 (1988), 9721–9745 | DOI

[10] N.A. Bannov, V.I. Ryzhiy, Iu.A. Volkov, “Metody makrochastits v matematicheskom modelirovanii elementov integralnykh skhem”, Mikroelektronika, 16:3 (1987), 210–219

[11] T. Kunikiyo, M. Takenaka, Y. Kamakura, M. Yamaji, H. Mizuno, “A Monte Carlo simulation of anisotropic electron transport in silicon including full band structure and anisotropic im-pact ionization model”, J. Appl. Phys., 75 (1995), 297–312 | DOI

[12] A.I. Chumakov, Deystvie kosmicheskoy radiatsii na integralnie ckhemy, Radio i sviaz, M., 2004, 319 pp.

[13] A.I. Chumakov, “Vzaimodeystviye ioniziruiushchikh izlucheniy s veshchestvom”, Radiatsionnaia stoykost izdeliy EKB, ed. A.I. Chumakov, NIYAU MIFI, M., 2015, 512 pp.

[14] A.V. Berezin, A.S. Vorontsov, M.E. Zhukovskiy, M.B. Markov, S.V. Parotkin, “Particle method for electrons in a scattering medium”, Computational Mathematics and Mathematical Physics, 55:9 (2015), 1534–1546 | DOI | MR | Zbl

[15] E. Sonwell, V.F. Weisskopf, “Theory of impurity scattering in semiconductors”, Phys. Rev., 77 (1950), 388 | DOI

[16] I.M. Sobol, Computational Methods of Monte Carlo, Nauka, M., 1973

[17] S.K. Godunov, T.Yu. Mikhailova, Representation of Rotation Group and Spherical Functions, Nauchnaya Kniga, Novosibirsk, 1998

[18] B.M. Smirnov, “Kinetics of electrons in gases and condensed systems”, UFN, 172 (2002), 1411–1447 | DOI

[19] C. Canali, C. Jacobini, F. Nava, G. Ottavini, A.A. Quaranta, “Electron drift velocity in silicon”, Phys. Rev., 12 (1975), 2265 | DOI