Modeling of the flow around permeable surfaces
Matematičeskoe modelirovanie, Tome 30 (2018) no. 11, pp. 127-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents the method of calculation the flow around a porous (permeable) surface by use of a set of bodies, modeling permeable part of the surface. A finite, relatively small number of elements, due to the computer processing capabilities, models the porous (permeable) surface. The geometric similarity of the shapes of surface elements and equal value of the permeability ratio provides the similarity between the aerodynamic surface properties in the mathematical model and the real surface. Comparison of calculation results with the experimental data shows a capability to reasonably predict the aerodynamic properties of the permeable surfaces. The computational feasibility in a large variation range of the permeability ratio is shown by the example of the flow calculation of torus with various geometric forms of section. The flow modeling possibility around complex configurations is demonstrated by the example of the flow calculations around permeable cone and cylinder. The set of programs for modeling two-dimensional plane and axisymmetric flows around the permeable surfaces is implemented.
Keywords: numerical simulation, permeable surface, aerodynamic properties.
@article{MM_2018_30_11_a9,
     author = {Yu. D. Shevelev and F. A. Maximov},
     title = {Modeling of the flow around permeable surfaces},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {127--144},
     publisher = {mathdoc},
     volume = {30},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_11_a9/}
}
TY  - JOUR
AU  - Yu. D. Shevelev
AU  - F. A. Maximov
TI  - Modeling of the flow around permeable surfaces
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 127
EP  - 144
VL  - 30
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_11_a9/
LA  - ru
ID  - MM_2018_30_11_a9
ER  - 
%0 Journal Article
%A Yu. D. Shevelev
%A F. A. Maximov
%T Modeling of the flow around permeable surfaces
%J Matematičeskoe modelirovanie
%D 2018
%P 127-144
%V 30
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_11_a9/
%G ru
%F MM_2018_30_11_a9
Yu. D. Shevelev; F. A. Maximov. Modeling of the flow around permeable surfaces. Matematičeskoe modelirovanie, Tome 30 (2018) no. 11, pp. 127-144. http://geodesic.mathdoc.fr/item/MM_2018_30_11_a9/

[1] S.M. Belotserkovskii (red.), Issledovanie parashiutov i deltaplanov na EVM, Mashinostroenie, M., 1987, 239 pp.

[2] A.A. Andreev, A.S. Kholodov, “Supersonic Flow about Blunt Bodies with Consideration of Interference”, J. of Comp. Math. and Math. Physics, 29:1 (1989), 142–147 | Zbl

[3] A.N. Kudryavsev, D.B. Epshtein, “Hysteresis Phenomena in Supersonic Flow past a System of Cylinders”, Fluid Dynamics, 47:3 (2012), 395–402 | DOI

[4] S.V. Guvernyuk, G.S. Ulianov, S.L. Antonova, Obtekanie mnogosviaznykh tel, dep. rukopis No 6614-B86, VINITI, M., 1986, 69 pp.

[5] F.A. Maksimov, Yu.D. Shevelev, “Ispolzovanie gibridnykh setok dlia reshenia zadach aerodinamicheskogo proektirovania”, Supervychislenia i matematicheskoe modelirovanie, Trudy XIII mezhd. konferentsii, FGUP «RFIaTS-VNIIEF», Sarov, 2012, 330–338

[6] S.A. Isaev, P.A. Baranov, A.E. Usachev, Mnogoblochnye vychislitelnye tekhnologii v pakete VP2/3 po aerotermodinamike, LAP LAMBERT Academic Publishing, AV Akademikerverlag GmbH Co. KG, 2013, 324 pp.

[7] F.A. Maksimov, “Sverkhzvukovoe obtekanie sistemy tel”, Kompiuternye issledovania i modelirovanie, 5:6 (2013), 969–980 | Zbl

[8] S.V. Guvernyuk, F. A. Maksimov, “Supersonic Flow past a Flat Lattice of Cylindrical Rods”, Comp. Mathem. and Mathem. Physics, 56:6 (2016), 1012–1019 | DOI | MR | Zbl

[9] S.V. Guvernyuk, F.A. Maksimov, “O vlianii tolshchiny reshetchatogo ekrana na ego aerodinamicheskie svoistva”, Materialy XX Iubileinoi Mezhdunarodnoi konf. po vychislitelinoi mekhanike i sovremennym prikladnym sistemam (VMSPPS'2017), 2017, 443–445

[10] F.A. Maksimov, D.A. Churakov, Yu.D. Shevelev, “Development of Mathematical Models and Numerical Methods for Aerodynamic Design on Multiprocessor Computers”, Comp. Mathematics and Mathematical Physics, 51:2 (2011), 284–307 | DOI | MR | Zbl

[11] V.I. Ivanov, V.Iu. Popov, Konformnye otobrazhenia i ikh prilozhenia, Editorial URSS, M., 2002, 324 pp.

[12] L.V. Kantorovich, V.I. Krylov, Priblizhennye metody vyschego analiza, Fizhmatlit, M., 1962, 708 pp.

[13] F.A. Maksimov, Yu.D. Shevelev, “Postroenie trekhmernykh setok s pomoshchiu priblizhennogo konformnogo otobrazhenia”, Supervychislenia i matematicheskoe modelirovanie, Trudy XIV mezhd. konferentsii, FGUP «RFIaTS-VNIIEF», Sarov, 2013, 401–407