Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_11_a8, author = {A. V. Favorskaya and I. B. Petrov}, title = {The use of full-wave numerical simulation for the investigation of fractured zones}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {105--126}, publisher = {mathdoc}, volume = {30}, number = {11}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_11_a8/} }
TY - JOUR AU - A. V. Favorskaya AU - I. B. Petrov TI - The use of full-wave numerical simulation for the investigation of fractured zones JO - Matematičeskoe modelirovanie PY - 2018 SP - 105 EP - 126 VL - 30 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_11_a8/ LA - ru ID - MM_2018_30_11_a8 ER -
A. V. Favorskaya; I. B. Petrov. The use of full-wave numerical simulation for the investigation of fractured zones. Matematičeskoe modelirovanie, Tome 30 (2018) no. 11, pp. 105-126. http://geodesic.mathdoc.fr/item/MM_2018_30_11_a8/
[1] K.M. Magomedov, A.S. Kholodov, “The construction of difference schemes for hyperbolic equations based on characteristic relations”, USSR Comp. Math. and Math. Physics, 9:2 (1969), 158–176 | DOI | MR
[2] K.M. Magomedov, A.S. Kholodov, Setochno-harakteristicheskie chislennye metody, Nauka, M., 1988, 287 pp. | MR
[3] A.S. Kholodov, “Construction of difference schemes with positive approximation for hyperbolic equations”, USSR Comp. Math. and Math. Physics, 18:6 (1978), 116–132 | DOI | MR
[4] A.S. Kholodov, “The construction of difference schemes of increased order of accuracy for equations of hyperbolic type”, USSR Comp. Math. and Math. Physics, 20:6 (1980), 234–253 | DOI | MR | Zbl
[5] I.B. Petrov, A.S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type”, USSR Comp. Math. and Math. Physics, 24:4 (1984), 128–138 | DOI | MR | Zbl
[6] I.E. Petrov, A.S. Kholodov, “Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method”, USSR Comp. Math. and Math. Physics, 24:3 (1984), 61–73 | DOI | MR | Zbl
[7] V.I. Kondaurov, I.B. Petrov, A.S. Kholodov, “Numerical modeling of the process of penetration of a rigid body of revolution into an elastoplastic barrier”, Journal of Applied Mechanics and Technical Physics, 25:4 (1984), 625–632 | DOI | MR
[8] A.V. Favorskaya, I.B. Petrov, “Grid-characteristic method”, Innovations Wave Modelling and Decision Making, Chapter 7, SIST Series, 90, Springer Switzerland, 2018, 117–160 | MR
[9] V.A. Biryukov, V.A. Miryakha, I.B. Petrov, N.I. Khokhlov, “Simulation of elastic wave propagation in geological media: Intercomparison of three numerical methods”, Comp. Mathematics and Mathematical Physics, 56:6 (2016), 1086–1095 | DOI | MR | Zbl
[10] I.B. Petrov, A.V. Favorskaya, N.I. Khokhlov, V.A. Miryakha, A.V. Sannikov, V.I. Golubev, “Monitoring the state of the moving train by use of high performance systems and modern computation methods”, Math. Models and Comp. Simulations, 7:1 (2015), 51–61 | DOI | MR
[11] I. Petrov, A. Vasyukov, K. Beklemysheva, A. Ermakov, A. Favorskaya, “Numerical Modeling of Non-destructive Testing of Composites”, Proc. Comp. Science, 96 (2016), 930–938 | DOI
[12] A. Favorskaya, I. Petrov, N. Khokhlov, “Numerical Modeling of Wave Processes during Shelf Seismic Exploration”, Procedia Computer Science, 96 (2016), 920–929 | DOI
[13] A.V. Favorskaya, N.I. Khokhlov, V.I. Golubev, A.V. Ekimenko, Yu.V. Pavlovskiy, I.Yu. Khromova, I.B. Petrov, “Wave processes modelling in geophysics”, Innovations Wave Modelling and Decision Making, Chapter 7, SIST Series, 90, Springer Switzerland, 2018, 187–218 | MR
[14] A.V. Favorskaya, I.B. Petrov, “Wave responses from oil reservoirs in the Arctic shelf zone”, Doklady Earth Sciences, 466:2 (2016), 214–217 | DOI | MR
[15] A.V. Favorskaya, I.B. Petrov, “Theory and practice of wave processes modelling”, Innovations Wave Modelling and Decision Making, Chapter 1, SIST Series, 90, Springer Switzerland, 2018, 1–6 | MR
[16] A.V. Favorskaya, I.B. Petrov, “Numerical modeling of dynamic wave effects in rock masses”, Doklady Mathematics, 95:3 (2017), 287–290 | DOI | MR | Zbl
[17] M. Dumbser, M. Kaser, “An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-II. The three-dimensional isotropic case”, Geophysical Journal International, 167:6 (2006), 319–336 | DOI
[18] D. Komatitsch, J.P. Vilotte, R. Vai, J.M. Castillo-Covarrubias, F.J. Sanchez-Sesma, “The spectral element method for elastic wave equations-application to 2-D and 3-D seismic problems”, International Journal for numerical methods in engineering, 45:9 (1999), 1139–1164 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[19] E. Faccioli, F. Maggio, R. Paolucci, A. Quarteroni, “2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method”, J. of Seismol., 1:3 (1997), 237–251 | DOI
[20] P. Moczo, J.O. Robertsson, L. Eisner, “The finite-difference time-domain method for modeling of seismic wave propagation”, Advances in geophysics, 48 (2007), 421–516 | DOI
[21] T. Wang, X. Tang, “Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach”, Geophysics, 68:5 (2003), 1749–1755 | DOI
[22] R.W. Graves, “Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences”, Bulletin of the Seismological Society of America, 86:4 (1996), 1091–1106 | MR
[23] M.S. Zhdanov, Geophysical inverse theory and regularization problems, Elsevier, Amsterdam, 2002
[24] P.V. Krauklis, L.A. Krauklis, “One type of waves in media with loosely bonded interface”, Journal of Mathematical Sciences, 55:3 (1991), 1725–1732 | MR | Zbl | Zbl
[25] V.B. Levjant, V.A. Mirjaha, M.V. Muratov, I.B. Petrov, “Ocenka vlijanija na sejsmicheskij otklik stepeni raskrytosti treshhiny i doli ploshhadi lokal'nyh kontaktov k ee poverhnosti”, Tehnologii sejsmorazvedki, 2015, no. 3, 16–30
[26] J. Zhang, “Elastic wave modeling in fractured media with an explicit approach”, Geophysics, 70:5 (2005), T75-T85 | DOI
[27] R. LeVeque, Finite volume methods for hyperbolic problems, Cambridge University Press, 2002 | MR | Zbl
[28] A.V. Favorskaya, I.B. Petrov, “A study of high-order grid-characteristic methods on unstructured grids”, Numerical Analysis and Applications, 9:2 (2016), 171–178 | DOI | MR | Zbl
[29] V.M. Babich, “Mnogomernyj metod VKB ili luchevoj metod. Ego analogi i obobshhenija”, Itogi nauki i tehniki. Ser. «Sovremennye problemy matematiki. Fundamental'nye napravlenija», 34, 1988, 93–134
[30] A.S. Glassner (ed.), An introduction to ray tracing, Elsevier, 1989
[31] A.G. Kulikovskij, N.V. Pogorelov, A.Ju. Semenov, Matematicheskie voprosy chislennogo reshenija giperbolicheskih sistem uravnenij, Fizmatlit, M., 2001, 607 pp.
[32] M.A. Il'gamov, A.N. Gil'manov, Neotrazhajushhie uslovija na granicah raschjotnoj oblasti, Fizmatlit, M., 2003
[33] Q.H. Liu, B.K. Sinha, “A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations”, Geophysics, 68:5 (2003), 1731–1743 | DOI
[34] F.H. Drossaert, A. Giannopoulos, “A nonsplit complex frequency-shifted PML based on recursive integration for FDTD modeling of elastic waves”, Geophysics, 72:2 (2007), T9–T17 | DOI | MR
[35] N. Hamdan, O. Laghrouche, P.K. Woodward, A. El-Kacimi, “Combined paraxial-consistent boundary conditions finite element model for simulating wave propagation in elastic halfspace media”, Soil Dynamics and Earthquake Engineering, 70 (2015), 80–92 | DOI
[36] G. Festa, S. Nielsen, “PML absorbing boundaries”, Bulletin of the Seismological Society of America, 93:2 (2003), 891–903 | DOI | MR