Numerical modeling of the relaxation of a body behind the transmitted shock wave
Matematičeskoe modelirovanie, Tome 30 (2018) no. 11, pp. 91-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of a planar shock wave – cylinder with different mass interaction is considered. The cylinder can move translationally under the action of the pressure force. The statement qualitatively corresponds to the problem of a particle relaxation behind the transmitted shock wave. Mathematical model is based on two-dimensional Euler equations. Numerical algorithm is based on the Cartesian grid method for the simulations of flows in the areas with varying geometry. The algorithm and its program realization are tested on the problem about the lifting of the cylinder behind the transmitted shock wave. The curves of the cylinder speed variation in time are plotted. The explanations about the qualitative view of the curves for the different cylinders masses are given. For one mass the analysis of the dynamics of the relaxation process is carried out from the point of view of the non-stationary shock waves patterns that are realized as a result of shock wave – cylinder interaction.
Keywords: shock wave, moving cylinder, numerical modeling, Cartesian grid method
Mots-clés : Euler equations.
@article{MM_2018_30_11_a7,
     author = {D. A. Sidorenko and P. S. Utkin},
     title = {Numerical modeling of the relaxation of a body behind the transmitted shock wave},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {91--104},
     publisher = {mathdoc},
     volume = {30},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_11_a7/}
}
TY  - JOUR
AU  - D. A. Sidorenko
AU  - P. S. Utkin
TI  - Numerical modeling of the relaxation of a body behind the transmitted shock wave
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 91
EP  - 104
VL  - 30
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_11_a7/
LA  - ru
ID  - MM_2018_30_11_a7
ER  - 
%0 Journal Article
%A D. A. Sidorenko
%A P. S. Utkin
%T Numerical modeling of the relaxation of a body behind the transmitted shock wave
%J Matematičeskoe modelirovanie
%D 2018
%P 91-104
%V 30
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_11_a7/
%G ru
%F MM_2018_30_11_a7
D. A. Sidorenko; P. S. Utkin. Numerical modeling of the relaxation of a body behind the transmitted shock wave. Matematičeskoe modelirovanie, Tome 30 (2018) no. 11, pp. 91-104. http://geodesic.mathdoc.fr/item/MM_2018_30_11_a7/

[1] V.M. Boiko, V.P. Kiselev, S.P. Kiselev, A.N. Papyrin, S.V. Poplavsky, V.M. Fomin, “Shock wave interaction with a cloud of particles”, Shock Waves, 7 (1997), 275–285 | DOI | Zbl

[2] J.D. Regele, J. Rabinovitch, T. Colonius, G. Blanquart, “Unsteady effects in dense, high speed, particle laden flows”, Int. J. Multiphase Flow, 61 (2014), 1–13 | DOI

[3] D.A. Sidorenko, P.S. Utkin, “Complex approach to the problem of numerical investigation of the shock wave — dense particles cloud interaction”, Comb. Expl., 10:2 (2017), 47–51 | MR

[4] P.S. Utkin, “Mathematical modeling of the interaction of a shock wave with a dense cloud of particles within the framework of the two-fluid approach”, Russian J. Phys. Chem. B, 11:6 (2017), 963–973 | DOI | DOI

[5] I.A. Bedarev, A.V. Fedorov, “Direct simulation of the relaxation of several particles behind transmitted shock wave”, J. Eng. Physics and Thermoph., 90:2 (2017), 423–429 | DOI

[6] D. Drikakis, D. Ofengeim, E. Timofeev, P. Voionovich, “Computation of non-stationary shock wave/cylinder interaction using adaptive-grid methods”, J. Fluids and Structures, 11:6 (1997), 665–692 | DOI

[7] K. Luo, Y. Luo, T. Jin, J. Fan, “Studies on shock interactions with moving cylinders using immersed boundary method”, Phys. Rev. Fluids, 2 (2017), 064302 | DOI | MR

[8] Y. Sakamura, M. Oshima, K. Nakayama, K. Motoyama, “Shock-induced motion of a spherical particle floating in air”, Proc. 31st Int. Symp. on Shock Waves (Nagoya, Japan, 9–14 July 2017), 249

[9] I.S. Menshov, M.A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry”, Math. Mod. Comp. Simul., 6:6 (2014), 612–621 | DOI | MR | Zbl

[10] V.P. Kolgan, “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniiu konechnoraznostnykh skhem dlia rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zapiski TsAGI, 3:6 (1972), 68–77

[11] A. Chertock, A. Kurganov, “A simple Eulerian finite-volume method for compressible fluids in domains with moving boundaries”, Comm. Math. Sci., 6:3 (2008), 531–556 | DOI | MR | Zbl

[12] S.K. Sambasivan, H.S. Udaykumar, “Ghost fluid method for strong shock interactions. Part 2: Immersed solid boundaries”, AIAA J., 47:12 (2009), 2923–2937 | DOI

[13] M. Arienti, P. Hung, E. Morano, J.E. Shepherd, “A level set approach to Eulerian–Lagrangian coupling”, J. Comp. Phys., 185:1 (2003), 213–251 | DOI | Zbl

[14] S. Tan, C.-W. Shu, “A high order moving boundary treatment for compressible inviscid flows”, J. Comp. Phys., 230:15 (2011), 6023–6036 | DOI | MR | Zbl

[15] H. Forrer, M. Berger, “Flow simulations on Cartesian grids involving complex moving geometries”, Proc. 7th Int. Conf. Hyper. Probl.: Theory, Numerics, Appl., v. 1, Zurich, 1999, 315–324 | MR | Zbl

[16] K.M. Shyue, “A moving-boundary tracking algorithm for inviscid compressible flow”, Proc. 11th Int. Conf. Hyper. Probl.: Theory, Numerics, Appl. (2008, Lyon, July 17–21, 2006), 989–996 | MR | Zbl

[17] W.D. Henshaw, D.W. Schwendeman, “Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow”, J. Comp. Phys., 216:2 (2006), 744–779 | DOI | MR | Zbl

[18] B. Muralidharan, S. Menon, “Simulations of unsteady shocks and detonation interactions with structures”, Proc. 49th AIAA/ASME/SAE/ASEE Joint Prop. Conf. (San Jose, CA, USA, July 14–17, 2013), AIAA, 2013, 3655

[19] W. Goldsmith, Impact: The theory and Physical Behaviour of Colliding Solids, Edward Arnold, London, 1960, 379 pp. | MR | Zbl

[20] R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, J.M. Koning, R.M. Greenman, G.T. Nakafuji, “Direct numerical simulation of disperse multiphase high-speed flows”, Proc. 42nd AIAA Aerospace Sci. Meet. Exhibit (Reno, Nevada, USA, January 5–8, 2004), AIAA, 1284

[21] I.V. Abalakin, N.S. Zhdanova, T.K. Kozubskaya, “Immersed boundary method implemented for the simulation of an external flow on unstructured meshes”, Math. Mod. Comp. Simul., 8:3 (2016), 219–230 | DOI | MR