Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_11_a7, author = {D. A. Sidorenko and P. S. Utkin}, title = {Numerical modeling of the relaxation of a body behind the transmitted shock wave}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {91--104}, publisher = {mathdoc}, volume = {30}, number = {11}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_11_a7/} }
TY - JOUR AU - D. A. Sidorenko AU - P. S. Utkin TI - Numerical modeling of the relaxation of a body behind the transmitted shock wave JO - Matematičeskoe modelirovanie PY - 2018 SP - 91 EP - 104 VL - 30 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_11_a7/ LA - ru ID - MM_2018_30_11_a7 ER -
D. A. Sidorenko; P. S. Utkin. Numerical modeling of the relaxation of a body behind the transmitted shock wave. Matematičeskoe modelirovanie, Tome 30 (2018) no. 11, pp. 91-104. http://geodesic.mathdoc.fr/item/MM_2018_30_11_a7/
[1] V.M. Boiko, V.P. Kiselev, S.P. Kiselev, A.N. Papyrin, S.V. Poplavsky, V.M. Fomin, “Shock wave interaction with a cloud of particles”, Shock Waves, 7 (1997), 275–285 | DOI | Zbl
[2] J.D. Regele, J. Rabinovitch, T. Colonius, G. Blanquart, “Unsteady effects in dense, high speed, particle laden flows”, Int. J. Multiphase Flow, 61 (2014), 1–13 | DOI
[3] D.A. Sidorenko, P.S. Utkin, “Complex approach to the problem of numerical investigation of the shock wave — dense particles cloud interaction”, Comb. Expl., 10:2 (2017), 47–51 | MR
[4] P.S. Utkin, “Mathematical modeling of the interaction of a shock wave with a dense cloud of particles within the framework of the two-fluid approach”, Russian J. Phys. Chem. B, 11:6 (2017), 963–973 | DOI | DOI
[5] I.A. Bedarev, A.V. Fedorov, “Direct simulation of the relaxation of several particles behind transmitted shock wave”, J. Eng. Physics and Thermoph., 90:2 (2017), 423–429 | DOI
[6] D. Drikakis, D. Ofengeim, E. Timofeev, P. Voionovich, “Computation of non-stationary shock wave/cylinder interaction using adaptive-grid methods”, J. Fluids and Structures, 11:6 (1997), 665–692 | DOI
[7] K. Luo, Y. Luo, T. Jin, J. Fan, “Studies on shock interactions with moving cylinders using immersed boundary method”, Phys. Rev. Fluids, 2 (2017), 064302 | DOI | MR
[8] Y. Sakamura, M. Oshima, K. Nakayama, K. Motoyama, “Shock-induced motion of a spherical particle floating in air”, Proc. 31st Int. Symp. on Shock Waves (Nagoya, Japan, 9–14 July 2017), 249
[9] I.S. Menshov, M.A. Kornev, “Free-boundary method for the numerical solution of gas-dynamic equations in domains with varying geometry”, Math. Mod. Comp. Simul., 6:6 (2014), 612–621 | DOI | MR | Zbl
[10] V.P. Kolgan, “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniiu konechnoraznostnykh skhem dlia rascheta razryvnykh reshenii gazovoi dinamiki”, Uchenye zapiski TsAGI, 3:6 (1972), 68–77
[11] A. Chertock, A. Kurganov, “A simple Eulerian finite-volume method for compressible fluids in domains with moving boundaries”, Comm. Math. Sci., 6:3 (2008), 531–556 | DOI | MR | Zbl
[12] S.K. Sambasivan, H.S. Udaykumar, “Ghost fluid method for strong shock interactions. Part 2: Immersed solid boundaries”, AIAA J., 47:12 (2009), 2923–2937 | DOI
[13] M. Arienti, P. Hung, E. Morano, J.E. Shepherd, “A level set approach to Eulerian–Lagrangian coupling”, J. Comp. Phys., 185:1 (2003), 213–251 | DOI | Zbl
[14] S. Tan, C.-W. Shu, “A high order moving boundary treatment for compressible inviscid flows”, J. Comp. Phys., 230:15 (2011), 6023–6036 | DOI | MR | Zbl
[15] H. Forrer, M. Berger, “Flow simulations on Cartesian grids involving complex moving geometries”, Proc. 7th Int. Conf. Hyper. Probl.: Theory, Numerics, Appl., v. 1, Zurich, 1999, 315–324 | MR | Zbl
[16] K.M. Shyue, “A moving-boundary tracking algorithm for inviscid compressible flow”, Proc. 11th Int. Conf. Hyper. Probl.: Theory, Numerics, Appl. (2008, Lyon, July 17–21, 2006), 989–996 | MR | Zbl
[17] W.D. Henshaw, D.W. Schwendeman, “Moving overlapping grids with adaptive mesh refinement for high-speed reactive and non-reactive flow”, J. Comp. Phys., 216:2 (2006), 744–779 | DOI | MR | Zbl
[18] B. Muralidharan, S. Menon, “Simulations of unsteady shocks and detonation interactions with structures”, Proc. 49th AIAA/ASME/SAE/ASEE Joint Prop. Conf. (San Jose, CA, USA, July 14–17, 2013), AIAA, 2013, 3655
[19] W. Goldsmith, Impact: The theory and Physical Behaviour of Colliding Solids, Edward Arnold, London, 1960, 379 pp. | MR | Zbl
[20] R.R. Nourgaliev, T.N. Dinh, T.G. Theofanous, J.M. Koning, R.M. Greenman, G.T. Nakafuji, “Direct numerical simulation of disperse multiphase high-speed flows”, Proc. 42nd AIAA Aerospace Sci. Meet. Exhibit (Reno, Nevada, USA, January 5–8, 2004), AIAA, 1284
[21] I.V. Abalakin, N.S. Zhdanova, T.K. Kozubskaya, “Immersed boundary method implemented for the simulation of an external flow on unstructured meshes”, Math. Mod. Comp. Simul., 8:3 (2016), 219–230 | DOI | MR