Numerical modeling of low-velocity impact on hybrid composite
Matematičeskoe modelirovanie, Tome 30 (2018) no. 11, pp. 27-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

To increase the strength of parts made of polymer composites in aviation, reinforcement of the polymer composite with one or several layers of metal is used. This work is devoted to the modeling of the behavior of such composites under low-velocity impacts. This impact type is especially dangerous for polymer composites because of the barely visible impact damage (BVID). Simulation was carried out using a grid-characteristic method, and various destruction criteria (Tsai-Hill, Tsai-Wu, Drucker-Prager, Hashin, Puck) and different types of contact between titanium and polymer composite were considered.
Keywords: numerical simulation, continuous mechanics, grid-characteristic method, polymer composite, low-velocity impact.
Mots-clés : hybrid composite, destruction
@article{MM_2018_30_11_a3,
     author = {K. A. Beklemysheva and I. B. Petrov},
     title = {Numerical modeling of low-velocity impact on hybrid composite},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--43},
     publisher = {mathdoc},
     volume = {30},
     number = {11},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_11_a3/}
}
TY  - JOUR
AU  - K. A. Beklemysheva
AU  - I. B. Petrov
TI  - Numerical modeling of low-velocity impact on hybrid composite
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 27
EP  - 43
VL  - 30
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_11_a3/
LA  - ru
ID  - MM_2018_30_11_a3
ER  - 
%0 Journal Article
%A K. A. Beklemysheva
%A I. B. Petrov
%T Numerical modeling of low-velocity impact on hybrid composite
%J Matematičeskoe modelirovanie
%D 2018
%P 27-43
%V 30
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_11_a3/
%G ru
%F MM_2018_30_11_a3
K. A. Beklemysheva; I. B. Petrov. Numerical modeling of low-velocity impact on hybrid composite. Matematičeskoe modelirovanie, Tome 30 (2018) no. 11, pp. 27-43. http://geodesic.mathdoc.fr/item/MM_2018_30_11_a3/

[1] S. Abrate, “Impact on laminated composite materials”, Applied Mechanics Reviews, 44:4 (1991), 155–190 | DOI

[2] S. Abrate, “Impact on laminated composites: recent advances”, Applied Mechanics Reviews, 47:11 (1994), 517–544 | DOI

[3] V. Lopresto, G. Caprino, “Damage mechanisms and energy absorption in composite laminates under low velocity impact loads”, Dynamic Failure of Composite and Sandwich Structures, Solid Mechanics and Its Applications, 192, eds. Abrate S., Castanie B., Rajapakse Y., Springer, Dordrecht, 2013, 209–289 | DOI | MR

[4] N. Hu, Y. Zemba, T. Okabe, C. Yan, H. Fukunaga, A. Elmarakbi, “A New Cohesive Model for Simulating Delamination Propagation in Composite Laminates under Transverse Loads”, Mechanics of Materials, 40:11 (2008), 920–935 | DOI

[5] K.A. Beklemysheva, A.V. Vasyukov, A.S. Ermakov, I.B. Petrov, A.S. Dzyuba, V.I. Golovan, “Chislennoe modelirovanie dinamicheskih protsessov pri nizkoskorostnom udare po kompozitnoi stringernoi paneli”, Matematicheskoe modelirovanie, 26:9 (2014), 96–110 | Zbl

[6] K.A. Beklemysheva, A.S. Ermakov, I.B. Petrov, A.V. Vasyukov, “Numerical simulation of the failure of composite materials by using the grid-characteristic method”, Mathematical Models and Computer Simulations, 8:5 (2016), 557–567 | DOI | MR

[7] R.P.L. Sanga, C.G.O. Pantale, “Finite Element Simulation of Low Velocity Impact Damage on an Aeronautical Carbon Composite Structure”, Appl. Comp. Materials, 23:6 (2016), 1195–1208 | DOI

[8] N.S. Bakhvalov, G.P. Panasenko, Averaging processes in periodic media, Nauka Publ., M., 1984, 356 pp.

[9] M.O.W. Richardson, M.J. Wisheart, “Review of low-velocity impact properties of composite materials”, Composites. Part A: Applied Science and Manufacturing, 29:12 (1996), 1123–1131 | DOI

[10] P.O. Sjoblom, J.T. Hartness, T.M. Cordell, “On low-velocity impact testing of composite materials”, Journal of Composite Materials, 22:1 (1988), 30–52 | DOI

[11] K.N. Shivakumar, W. Elber, W. Illg, “Prediction of low-velocity impact damage in thin circular laminates”, AIAA J., 23:3 (1985), 442–449 | DOI | Zbl

[12] W.J. Cantwell, J. Morton, “The impact resistance of composite materials — a review”, Composites, 22:5 (1991), 347–362 | DOI

[13] P. Robinson, G.A.O. Davies, “Impactor mass and specimen geometry effects in low velocity impact of laminated composites”, Int. J. of Impact Eng., 12:2 (1992), 189–207 | DOI

[14] G.A.O. Davies, P. Robinson, Predicting failure by debonding/delamination, Imperial Coll. of Science and Technology, London, England, 1992

[15] D. Liu, L.E. Malvern, “Matrix cracking in impacted glass/epoxy plates”, J. of Composite Materials, 21:7 (1987), 594–609 | DOI

[16] R.C. Batra, G. Gopinath, J.Q. Zheng, “Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates”, Comp. Structures, 94:2 (2012), 540–547 | DOI

[17] D. Hull, Y.B. Shi, “Damage mechanism characterisation in composite damage tolerance investigations”, Composite Structures, 23 (1993), 99–120 | DOI

[18] S.A. Hitchen, R.M.J. Kemp, “The effect of stacking sequence on impact damage in a carbon fibre/epoxy composite”, Composites, 26:3 (1995), 207–214 | DOI

[19] H. Kaczmerek, “Ultrasonic detection of damage in CFRPs”, J. of Composite Materials, 29:1 (1995), 59–95 | DOI

[20] M.V. Hosur, C.R.L. Murthy, T.S. Ramamurthy, A. Shet, “Estimation of impact-induced damage in CFRP laminates through ultrasonic imaging”, NDT Int., 31:5 (1998), 359–374 | DOI

[21] I.B. Petrov, A.V. Favorskaya, A.V. Vasyukov, A.S. Ermakov, K.A. Beklemysheva, “Numerical Modeling of Non-destructive Testing of Composites”, Proc. Computer Science, 96 (2016), 930–938 | DOI

[22] M.R. Abdullah, W.J. Cantwell, “The impact resistance of polypropylene-based fibre-metal laminates”, Composites Science and Technology, 66:11–12 (2006), 1682–1693 | DOI

[23] L.B. Vogelesang, A. Vlot, “Development of fibre metal laminates for advanced aerospace structures”, J. of Materials Processing Technology, 103:1 (2000), 1–5 | DOI

[24] G.B. Chai, P. Manikandan, “Low velocity impact response of fibre-metal laminates — A review”, Composite Structures, 107 (2014), 363–381 | DOI

[25] I.B. Petrov, A.G. Tormasov, “Chislennoe issledovanie kosogo soudarenija zhestkogo sharika s dvuhslojnoj uprugoplasticheskoj plitoj”, Matem. Modelirovanie, 4:3 (1992), 20–27

[26] B. Petrov, F. B. Chelnokov, “Numerical Analysis of Wave Processes and Fracture in Layered Targets”, Comp. Math. Math. Phys., 43:10 (2003), 1503–1519 | MR | Zbl

[27] J.B. Young, J.G.N. Landry, V.N. Cavoulacos, “Crack growth and residual strength characteristics of two grades of glass-reinforced aluminium GLARE”, Composite Structures, 27:4 (1994), 457–469 | DOI

[28] M. Papakyriacou, J. Schijve, S.E. Stanzl-Tschegg, “Fatigue crack growth behaviour of fibre-metal laminate GLARE-1 and metal laminate 7475 with different blunt notches”, Fatigue Fracture of Engineering Materials Structures, 20:11 (1997), 1573–1584 | DOI

[29] W. Guocai, J.-M. Yang, “The mechanical behavior of GLARE laminates for aircraft structures”, The Journal of the Minerals, 57:1 (2005), 72–79

[30] V.V. Antipov, O.G. Senatorova, N.F. Lukina, V.V. Sidelnikov, V.V. Shestov, “Sloistyje metallopolimernyje kompozitsionnyje materialy”, Aviatsionnyje materialy i tehnologii, 2012, no. 5, 226–230

[31] M. Sadighi, R.C. Alderliesten, R. Benedictus, “Impact resistance of fiber-metal laminates: A review”, International Journal of Impact Engineering, 49 (2012), 77–90 | DOI

[32] A. Vlot, Low-Velocity Impact Loading on Fibre Reinforced Aluminium Laminates (ARALL) and Other Aircraft Sheet Materials, Tech. Univ. Delft, Delft, Netherlands, 1991

[33] A. Vlot, “Impact Loading on Fibre Metal Laminates”, International Journal of Impact Engineering, 18:3 (1996), 291–307 | DOI

[34] G. Caprino, G. Spataro, S. Del Luongo, “Low-Velocity Impact Behaviour of FiberglassAluminium Laminates”, Composites, Part A, 35 (2004), 605–616 | DOI

[35] S. Zhu, G.B. Chai, “Low-velocity impact response of fibre-metal laminates — experimental and finite element analysis”, Comp. Sci. and Technology, 72:15 (2012), 1793–1802 | DOI

[36] S. Bernhardt, M. Ramulu, A. Kobayashi, “Low-Velocity Impact Response Characterization of a Hybrid Titanium Composite Laminate”, J. of Eng. Materials and Technology, 129:2 (2007), 220–226 | DOI | MR

[37] D.A. Burianek, A.E. Giannakopoulos, S.M. Spearing, “Modeling of facesheet crack growth in titanium-graphite hybrid laminates, P. I”, Eng. Fracture Mech., 70:6 (2003), 775–798 | DOI

[38] D.A. Burianek, S.M. Spearing, “Modeling of Facesheet Crack Growth in Titanium-Graphite Hybrid Laminates. P. II: Experimental results”, Eng. Fracture Mech., 70:6 (2003), 799–812 | DOI

[39] D.W. Rhymer, W.S. Johnson, “Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates”, International Journal of Fatigue, 24:9 (2002), 995–1001 | DOI

[40] A. Vlot, “Impact properties of fibre metal laminates”, Comp. Eng., 3:10 (1993), 911–927 | DOI

[41] A. Seyed Yaghoubi, Y. Liu, B. Liaw, “Stacking sequence and geometrical effects on lowvelocity impact behaviors of GLARE 5 (3/2) fiber-metal laminates”, Journal of Thermoplastic Composite Materials, 25:2 (2011), 223–247 | DOI | MR

[42] N.Y. Liu, B. Liaw, “Effects of Constituents and Lay-up Configuration on Drop-Weight Tests of Fiber-Metal Laminates”, Applied Composite Materials, 17:1 (2010), 43–62 | DOI

[43] P. Cortes, W.J. Cantwell, “The Tensile and Fatigue Properties of Carbon Fiber-reinforced PEEK-Titanium Fiber-metal Laminates”, J. of Reinforced Plastics and Comp., 23:15 (2004), 1615–1623 | DOI

[44] G.B. Chai, P. Manikandan, “A layer-wise behavioral study of metal based interply hybrid composites under low velocity impact load”, Composite Structures, 117 (2014), 17–31 | DOI

[45] E.N. Kablov, V.V. Antipov, O.G. Senatorova, “Sloistyje alumostekloplastiki SIAL-1441 i sotrudnichestvo s Airbus i TU DELFT”, Tsvetnyje metally, 2013, no. 9(849), 50–53

[46] V.V. Antipov, O.G. Senatorova, N.F. Lukina, V.V. Sidelnikov, V.V. Shestov, O.V. Mitrakov, B.I. Popov, A.S. Ershov, “Vysokoprochnyje treshinostojkie legkie sloistyje alumostekloplastiki klassa SIAL - perspektivnyj material dlja aviatsionnyh konstruktsij”, Tehnologija legkih splavov, 2009, no. 2, 28–31

[47] N.A. Nochovnaya, P.V. Panin, E.B. Alekseev, K.A. Bokov, “Ekonomnolegirovannyje titanovyje splavy dlja sloistyh metallopolimernuh kompozitsionnyh materialov”, Trudy VIAM, 2014, no. 11

[48] T. Zhang, Y. Yan, J. Li, H. Luo, “Low-velocity impact of honeycomb sandwich composite plates”, Journal of Reinforced Plastics and Composites, 35:1 (2015), 8–32 | DOI

[49] G.B. Chai, S. Zhu, “A review of low-velocity impact on sandwich structures”, J. of Materials: Design and Applications, 225:4, Proceedings of the Institution of Mechanical Engineers, Part L (2011), 207–230

[50] C. Scarponi, G. Briotti, R. Barboni, A. Marcone, M. Iannone, “Impact testing on composite laminates and sandwich panels”, J. of Comp. Materials, 30:17 (1996), 1873–1911 | DOI

[51] Ju.I. Dimitrienko, Ju.V. Jurin, “Mnogomasshtabnoe modelirovanie mnogoslojnyh tonkih kompozitnyh plastin s uedinennymi defektami”, Mat. mod. i chisl. met., 2016, no. 12, 47–66

[52] B.R. Petersen, Finite element analysis of composite plate impacted by a projectile, University of Florida, 1985

[53] G.A.O Davies, X. Zhang, G. Zhou, S. Watson, “Numerical modelling of impact damage”, Composites, 25 (1994), 342–350 | DOI

[54] V. Tita, J.J. de Carvalho, D. Vandepitte, “Failure analysis of low velocity impact on thin composite laminates: experimental and numerical approaches”, Compos. Struct., 83 (2008), 413–428 | DOI

[55] F. Hashagen, R. de Borst, “Numerical assessment of delamination in fibre metal laminates”, Comp. Methods Appl. Mech. Eng., 185 (2000), 141–159 | DOI | Zbl

[56] H. Nakatani, T. Kosaka, K. Osaka, Y. Sawada, “Damage characterization of titanium/GFRP hybrid laminates subjected to low-velocity impact”, Composites Part A: Applied Science and Manufacturing, 42:7 (2011), 772–781 | DOI

[57] M.J. Reiner, J.P. Torres, M. Veidt, M. Heitzmann, “Experimental and numerical analysis of drop-weight low-velocity impact tests on hybrid titanium composite laminates”, Journal of Composite Materials, 50:26 (2016), 3605–3617 | DOI

[58] A. Kursun, M. Senel, H. M. Enginsoy, “Experimental and numerical analysis of low velocity impact on a preloaded composite plate”, Advances in Eng. Software, 90 (2015), 41–52 | DOI

[59] F.D. Moriniere, R.C. Alderliesten, M.Y. Tooski, B. Rinze, “Damage evolution in GLARE fibre-metal laminate under repeated low-velocity impact tests”, Central European J. of Eng., 2:4 (2012), 603–611

[60] G.R. Rajkumar, M. Krishna, H.N. Narasimha Murthy, S.C. Sharma, K.R. Vishnu Mahesh, “Experimental Investigation of Low-Velocity Repeated Impacts on Glass Fiber Metal Composites”, J. of Materials Eng. and Performance, 21:7 (2012), 1485–1490 | DOI

[61] M.J. Hinton, A.S. Kaddour, “Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II”, J. of Comp. Mater., 2013, no. 7, 925–966

[62] M.J. Hinton, A.S. Kaddour, P.D. Soden, Failure criteria in fibre reinforced polymer composites: the world-wide failure exercise, Elsevier, Amsterdam–London, 2004

[63] Y.P. Siow, P.W. Shim, “An experimental study of low velocity impact damage in woven fiber composites”, J. of Composite Materials, 32:12 (1998), 1178–1202 | DOI

[64] G. Dorey, P. Sigety, K. Stellbrink, W.G.J. Hart, Impact damage tolerance of carbon fibre and hybrid laminates, RAE Technical Report 87 057, Royal Aerospace Establishment, Farnborough, UK, 1987

[65] H.-Y.T. Wu, G.S. Springer, “Impact induced stresses, strains, and delaminations in composite plates”, Journal of Composite Materials, 22:6 (1988), 533–560 | DOI

[66] N. Sela, O. Ishai, “Interlaminar fracture toughness and toughening of laminated composite materials: a review”, Composites, 20:5 (1989), 423–443 | DOI

[67] D.S. Cairns, P.J. Minuet, M.G. Abdallah, “Theoretical and experimental response of composite laminates with delaminations loaded in compression”, Comp. Struct., 25 (1993), 113–120 | DOI

[68] A.T. Nettles, A.J. Hodge, “Compression-after-impact testing of thin composite materials”, Proc. 23rd Int. SAMPE Conf. (Kiamesha Lake, NY, Oct. 21–24), Society for the Advancement of Material and Proc. Eng., Covina, CA, 1991, 177–183

[69] M.N. Ghasemi Nejhad, A. Parvizi-Majidi, “Impact behaviour and damage tolerance of woven carbon fibre-reinforced thermoplastic composites”, Comp., 21:2 (1990), 155–168 | MR

[70] C.T. Sun, A. Dicken, H.F. Wu, “Characterization of impact damage in ARALL laminates”, Comp. Sci. Technol., 49 (1993), 139–144 | DOI

[71] E.V. Gonzalez, P. Maimi, P.P. Camanho, A. Turon, J.A. Mayugo, “Simulation of dropweight impact and compression after impact tests on composite laminates”, Composite Structures, 94:11 (2012), 3364–3378 | DOI

[72] G. Caprino, “Residual strength prediction of impacted CFRP laminates”, Journal of Composite Materials, 18 (1984), 508–518 | DOI

[73] G.I. Kanel, S.V. Razorenov, A.V. Utkin, V.E. Fortov, Udarno-volnovyje javlenija v kondensirovannyh sredah, Janus-K, M., 1996, 407 pp.

[74] V.D. Ivanov, V.I. Kondaurov, I.B. Petrov, A.S. Holodov, “Raschet dinamicheskogo deformirovanija i razrushebija uprugoplasticheskih tel setochno-harakteristicheskim metodom”, Matem. Modelirovanije, 2:11 (1990), 10–29 | Zbl

[75] R.B. Bucinell, R.J. Nuismer, J.L. Koury, “Response of composite plates to quasi-static impact events”, Composite materials: fatigue and fracture, ASTM STP, 1110, ed. T.K. O'Brien, 1991, 528–549

[76] M.G. Stout, D.A. Koss, C. Liu, J. Idasetima, “Damage development in carbon/epoxy laminates under quasi-static and dynamic loading”, Comp. Sci. Technol., 59 (1999), 2339–2350 | DOI

[77] D. Delfosse, A. Poursatip, “Energy-based approach to impact damage in CFRP laminates”, Composites, 28 (1997), 647–655 | DOI

[78] S. Hong, D. Liu, “On the relationship between impact energy and delamination area”, Exp. Mech., 29:2 (1989), 115–120 | DOI

[79] K.M. Magomedov, A.S. Kholodov, Setochno-harakteristicheskie metody, Nauka, M., 1988, 288 pp.

[80] V.I. Golubev, I.B. Petrov, “Opit rascheta seismicheskikh otklikov ot krivolinejnikh geologicheskikh graniz na osnove ih yavnogo videleniya”, Technologii seismorazvedki, 4 (2016), 45–51

[81] I.B. Petrov, N.I. Khokhlov, “Modeling 3D seismic problems using high-performance computer systems”, Math. Models and Computer Simulations, 6:4 (2014), 342–350 | DOI | MR

[82] V.I. Golubev, I.E. Kvasov, I.B. Petrov, “Influence of natural disasters on ground facilities”, Math. Models and Computer Simulations, 4:2 (2012), 129–134 | DOI | MR

[83] I.B. Petrov, A.V. Favorskaya, N.I. Khokhlov, V.A. Miryakha, A.V. Sannikov, V.I. Golubev, “Monitoring the state of the moving train by use of high performance systems and modern computation methods”, Math. Models and Comp. Simulations, 7:1 (2015), 51–61 | DOI | MR

[84] K.A. Beklemysheva, A.A. Danilov, I.B. Petrov, V.Yu. Salamatova, Yu.V. Vassilevski, A.V. Vasyukov, “Virtual blunt injury of human thorax: Age-dependent response of vascular system”, RJNAMM, 30:5 (2015), 259–268 | MR | Zbl

[85] P.I. Agapov, O.M. Belotserkovskii, I.B. Petrov, “Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury”, Comp. Math. and Math. Phys., 46:9 (2006), 1629–1638 | DOI | MR

[86] F.B. Chelnokov, “Iavnoe predstavlenie setochno-kharakteristicheskikh skhem dlia uravenii uprugosti v dvumernom i trekhmernom prostranstvakh”, Matem. Model., 18:6 (2006), 96–108 | Zbl

[87] I.B. Petrov, A.V. Favorskaia, “Biblioteka metodov interpoliatsii vysokikh poriadkov na nestrukturirovannykh treugolnykh i tetraedralnykh setkakh”, Informatsionnye tekhnologii, 2011, no. 9, 30–32

[88] I.B. Petrov, A.V. Favorskaya, A.V. Vasyukov, A.S. Ermakov, K.A. Beklemysheva, A.O. Kazakov, A.V. Novikov, “Numerical simulation of wave propagation in anisotropic media”, Doklady Mathematics, 90:3 (2015), 778–780 | DOI