Modeling of branched pipeline systems
Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 123-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper examines classical approaches and variety of existing software solutions for pipeline systems modeling. There is pipeline systems modeling method, which is universal for all types of hydraulic elements and is aimed at branched multi-element pipeline systems calculation. Simulated pipeline system can have arbitrary topology and isolated circuits. Realization of hydraulic elements modeling and their application within the software product «FlowDesigner» are described.
Keywords: modeling, pipelines, hydraulic elements, FlowDesigner.
@article{MM_2018_30_10_a6,
     author = {A. V. Yalozo and A. S. Kozelkov and V. V. Kurulin and I. L. Materova and A. V. Kornev and D. Yu. Strelets},
     title = {Modeling of branched pipeline systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {123--138},
     publisher = {mathdoc},
     volume = {30},
     number = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_10_a6/}
}
TY  - JOUR
AU  - A. V. Yalozo
AU  - A. S. Kozelkov
AU  - V. V. Kurulin
AU  - I. L. Materova
AU  - A. V. Kornev
AU  - D. Yu. Strelets
TI  - Modeling of branched pipeline systems
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 123
EP  - 138
VL  - 30
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_10_a6/
LA  - ru
ID  - MM_2018_30_10_a6
ER  - 
%0 Journal Article
%A A. V. Yalozo
%A A. S. Kozelkov
%A V. V. Kurulin
%A I. L. Materova
%A A. V. Kornev
%A D. Yu. Strelets
%T Modeling of branched pipeline systems
%J Matematičeskoe modelirovanie
%D 2018
%P 123-138
%V 30
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_10_a6/
%G ru
%F MM_2018_30_10_a6
A. V. Yalozo; A. S. Kozelkov; V. V. Kurulin; I. L. Materova; A. V. Kornev; D. Yu. Strelets. Modeling of branched pipeline systems. Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 123-138. http://geodesic.mathdoc.fr/item/MM_2018_30_10_a6/

[1] M.A. Pogosian, E.P. Savelevskikh, R.M. Shagaliev, A.S. Kozelkov, D.Iu. Strelets, A.A. Riabov, A.V. Kornev, Iu.N. Deriugin, V.F. Spiridonov, K.V. Tsiberev, “Primenenie otechestvennykh superkompiuternykh tekhnologii dlia sozdaniia perspektivnykh obraztsov aviatsionnoi tekhniki”, Zhurnal VANT, ser. Matem. model. fizich. protsessov, 2013, no. 2, 3–17

[2] E.P. Savelevskikh, R.M. Shagaliev, D.Iu. Strelets, A.S. Kozelkov, A.V. Kornev, “Primenenie superkompiuternykh tekhnologii dlia resheniia aktualnykh zadach proektirovaniia novykh obraztsov aviatsionnoi tekhniki”, Nauchno-tekhnicheskii zhurnal «Nauka i tekhnologii v promyshlennosti», 2014, no. 1–2, 71–82

[3] A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Computational Mathematics and Mathematical Physics, 56:8 (2016), 1506–1516

[4] A.R.D. Thorley, C.H. Tiley, “Unsteady and transient flow of compressible fluids in pipelines - a review of theoretical and some experimental studies”, Heat and Fluid Flow, 8:1 (1978), 3–15

[5] A.P. Merenkov, V.Ia. Khasilev, Teoriia gidravlicheskikh tsepei, Nauka, M., 1985, 279 pp.

[6] I.E. Idelchik, Spravochnik po gidravlicheskim soprotivleniiam, Mashinostroenie, M., 1992, 672 pp.

[7] V.E. Seleznev, V.V. Aleshin, S.N. Prialov, Matematicheskoe modelirovanie truboprovodnykh setei i kanalov. Metody, modeli i algoritmy, MAKS Press, M., 2007, 695 pp.

[8] S.C. Pang, M.A. Kalam, H.H. Masjuki, M.A. Hazrat, “A review on air flow and coolant flow circuit in vehicles' cooling system”, International Journal of Heat and Mass Transfer, 55 (2012), 6295–6306

[9] P. Heesung, “Numerical assessment of liquid cooling system for power electronics in fuel cell electric vehicles”, International Journal of Heat and Mass Transfer, 73 (2014), 511–520

[10] Pengyu Lu, Qing Gao, Yan Wang, “The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management”, Applied Thermal Engineering, 104 (2016), 42–53

[11] V.P. Vizgin, Razvitie vzaimosviazi printsipov invariantnosti s zakonami sokhraneniia v klassicheskoi fizike, Nauka, M., 1972, 240 pp.

[12] Programma “Gidrosistema”

[13] E. Todini, S. Pilati, “A gradient method for the solution of looped pipe networks”, Comput. Appl. Water Supply, 1988, no. 1, 1–20

[14] M.A.H. Abdy Sayyed, R. Gupta, T.T. Tanyimboh, “Modelling Pressure Deficient Water Distribution Networks in EPANET”, Procedia Engineering, 89 (2014), 626–631

[15] “Haestad methods”, World Pumps, 1999, no. 388, 52

[16] B. Eriksson, P. Nordin, P. Krus, “Hopsan NG, A C++ Implementation using the TLM Simulation Technique”, Proceedings of The 51st Conference on Simulation and Modelling (Oulu, Finland, 2010)

[17] D.M. Auslander, “Distributed system simulation with bilateral delay-line models”, Journal of Basic Engineering, 90 (1968), 195–200

[18] Programma “FlowMaster”

[19] A.B. Skvortsov, D.S. Sarychev, “Modelirovanie elementov truboprovodov”, Izv. vuzov. Fizika, 2002, no. 2, 57–63

[20] A.S. Kozelkov, Iu.N. Deriugin, S.V. Lashkin, D.P. Silaev, P.G. Simonov, E.S. Tiatiushkina, “Realizatsiia metoda rascheta viazkoi neszhimaemoi zhidkosti s ispolzovaniem mnogosetochnogo metoda na osnove algoritma SIMPLE v pakete programm LOGOS”, VANT. Matematicheskoe modelirovanie fizicheskikh protsessov, 2013, no. 4, 44–56

[21] K.N. Volkov, Iu.N. Deriugin, V.N. Emelianov, A.G. Karpenko, A.S. Kozelkov, I.V. Teterina, Metody uskoreniia gazodinamicheskikh raschetov na nestrukturirovannykh setkakh, Fizmatlit, M., 2013, 536 pp.

[22] E. Allen, J. Burns, D. Gilliam, J. Hill, V. Shubov, “The Impact of Finite Precision Arithmetic and Sensitivity on the Numerical Solution of Part ial Different ial Equations”, Mathematical and Computer Modelling, 35 (2002), 1165–1196

[23] A.V. Levitin, Introduction to the Design Analysis of Algorithms, Addison-Wesley, 2003, 528 pp.

[24] S. Lipschutz, M. Lipson, Schaum's Outlines: Linear Algebra, Tata McGraw-hill edition, 2001, 69–80

[25] S. Ates, “Hydraulic modelling of closed pipes in loop equations of water distribution networks”, Applied Mathematical Modelling, 40 (2016), 966–983

[26] B.E. Larock, R.W. Jeppson, G.Z. Watters, Hydraulics of Pipeline Systems, CRC Press, 2000, 522 pp.

[27] R.W. Jeppson, Steady Flow Analysis of Pipe Networks: An Instructional Manual, Utah State University Press, 1974, 88 pp.