Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_10_a6, author = {A. V. Yalozo and A. S. Kozelkov and V. V. Kurulin and I. L. Materova and A. V. Kornev and D. Yu. Strelets}, title = {Modeling of branched pipeline systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {123--138}, publisher = {mathdoc}, volume = {30}, number = {10}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_10_a6/} }
TY - JOUR AU - A. V. Yalozo AU - A. S. Kozelkov AU - V. V. Kurulin AU - I. L. Materova AU - A. V. Kornev AU - D. Yu. Strelets TI - Modeling of branched pipeline systems JO - Matematičeskoe modelirovanie PY - 2018 SP - 123 EP - 138 VL - 30 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_10_a6/ LA - ru ID - MM_2018_30_10_a6 ER -
%0 Journal Article %A A. V. Yalozo %A A. S. Kozelkov %A V. V. Kurulin %A I. L. Materova %A A. V. Kornev %A D. Yu. Strelets %T Modeling of branched pipeline systems %J Matematičeskoe modelirovanie %D 2018 %P 123-138 %V 30 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2018_30_10_a6/ %G ru %F MM_2018_30_10_a6
A. V. Yalozo; A. S. Kozelkov; V. V. Kurulin; I. L. Materova; A. V. Kornev; D. Yu. Strelets. Modeling of branched pipeline systems. Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 123-138. http://geodesic.mathdoc.fr/item/MM_2018_30_10_a6/
[1] M.A. Pogosian, E.P. Savelevskikh, R.M. Shagaliev, A.S. Kozelkov, D.Iu. Strelets, A.A. Riabov, A.V. Kornev, Iu.N. Deriugin, V.F. Spiridonov, K.V. Tsiberev, “Primenenie otechestvennykh superkompiuternykh tekhnologii dlia sozdaniia perspektivnykh obraztsov aviatsionnoi tekhniki”, Zhurnal VANT, ser. Matem. model. fizich. protsessov, 2013, no. 2, 3–17
[2] E.P. Savelevskikh, R.M. Shagaliev, D.Iu. Strelets, A.S. Kozelkov, A.V. Kornev, “Primenenie superkompiuternykh tekhnologii dlia resheniia aktualnykh zadach proektirovaniia novykh obraztsov aviatsionnoi tekhniki”, Nauchno-tekhnicheskii zhurnal «Nauka i tekhnologii v promyshlennosti», 2014, no. 1–2, 71–82
[3] A.S. Kozelkov, V.V. Kurulin, S.V. Lashkin, R.M. Shagaliev, A.V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Computational Mathematics and Mathematical Physics, 56:8 (2016), 1506–1516
[4] A.R.D. Thorley, C.H. Tiley, “Unsteady and transient flow of compressible fluids in pipelines - a review of theoretical and some experimental studies”, Heat and Fluid Flow, 8:1 (1978), 3–15
[5] A.P. Merenkov, V.Ia. Khasilev, Teoriia gidravlicheskikh tsepei, Nauka, M., 1985, 279 pp.
[6] I.E. Idelchik, Spravochnik po gidravlicheskim soprotivleniiam, Mashinostroenie, M., 1992, 672 pp.
[7] V.E. Seleznev, V.V. Aleshin, S.N. Prialov, Matematicheskoe modelirovanie truboprovodnykh setei i kanalov. Metody, modeli i algoritmy, MAKS Press, M., 2007, 695 pp.
[8] S.C. Pang, M.A. Kalam, H.H. Masjuki, M.A. Hazrat, “A review on air flow and coolant flow circuit in vehicles' cooling system”, International Journal of Heat and Mass Transfer, 55 (2012), 6295–6306
[9] P. Heesung, “Numerical assessment of liquid cooling system for power electronics in fuel cell electric vehicles”, International Journal of Heat and Mass Transfer, 73 (2014), 511–520
[10] Pengyu Lu, Qing Gao, Yan Wang, “The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management”, Applied Thermal Engineering, 104 (2016), 42–53
[11] V.P. Vizgin, Razvitie vzaimosviazi printsipov invariantnosti s zakonami sokhraneniia v klassicheskoi fizike, Nauka, M., 1972, 240 pp.
[12] Programma “Gidrosistema”
[13] E. Todini, S. Pilati, “A gradient method for the solution of looped pipe networks”, Comput. Appl. Water Supply, 1988, no. 1, 1–20
[14] M.A.H. Abdy Sayyed, R. Gupta, T.T. Tanyimboh, “Modelling Pressure Deficient Water Distribution Networks in EPANET”, Procedia Engineering, 89 (2014), 626–631
[15] “Haestad methods”, World Pumps, 1999, no. 388, 52
[16] B. Eriksson, P. Nordin, P. Krus, “Hopsan NG, A C++ Implementation using the TLM Simulation Technique”, Proceedings of The 51st Conference on Simulation and Modelling (Oulu, Finland, 2010)
[17] D.M. Auslander, “Distributed system simulation with bilateral delay-line models”, Journal of Basic Engineering, 90 (1968), 195–200
[18] Programma “FlowMaster”
[19] A.B. Skvortsov, D.S. Sarychev, “Modelirovanie elementov truboprovodov”, Izv. vuzov. Fizika, 2002, no. 2, 57–63
[20] A.S. Kozelkov, Iu.N. Deriugin, S.V. Lashkin, D.P. Silaev, P.G. Simonov, E.S. Tiatiushkina, “Realizatsiia metoda rascheta viazkoi neszhimaemoi zhidkosti s ispolzovaniem mnogosetochnogo metoda na osnove algoritma SIMPLE v pakete programm LOGOS”, VANT. Matematicheskoe modelirovanie fizicheskikh protsessov, 2013, no. 4, 44–56
[21] K.N. Volkov, Iu.N. Deriugin, V.N. Emelianov, A.G. Karpenko, A.S. Kozelkov, I.V. Teterina, Metody uskoreniia gazodinamicheskikh raschetov na nestrukturirovannykh setkakh, Fizmatlit, M., 2013, 536 pp.
[22] E. Allen, J. Burns, D. Gilliam, J. Hill, V. Shubov, “The Impact of Finite Precision Arithmetic and Sensitivity on the Numerical Solution of Part ial Different ial Equations”, Mathematical and Computer Modelling, 35 (2002), 1165–1196
[23] A.V. Levitin, Introduction to the Design Analysis of Algorithms, Addison-Wesley, 2003, 528 pp.
[24] S. Lipschutz, M. Lipson, Schaum's Outlines: Linear Algebra, Tata McGraw-hill edition, 2001, 69–80
[25] S. Ates, “Hydraulic modelling of closed pipes in loop equations of water distribution networks”, Applied Mathematical Modelling, 40 (2016), 966–983
[26] B.E. Larock, R.W. Jeppson, G.Z. Watters, Hydraulics of Pipeline Systems, CRC Press, 2000, 522 pp.
[27] R.W. Jeppson, Steady Flow Analysis of Pipe Networks: An Instructional Manual, Utah State University Press, 1974, 88 pp.