The effect of electron-ion collisions on the breaking of cylindrical plasma oscillations
Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 86-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

The influence of electron-ion collisions on the breaking of cylindrical nonlinear plasma oscillations is studied. Numerical calculations by the particle method and an analytic analysis by the perturbation method in the weak nonlinearity regime show that with increasing collision frequency, the time of the breaking of plasma oscillations increases. The threshold value of the collision frequency is found, at which excess the density singularity does not arise. In this case, the maximum of the electron density formed outside the axis of the oscillations, the growth of which in the regime of rare collisions leads to the breaking effect, after some growth begins to decrease due to damping of the oscillations.
Mots-clés : plasma oscillations, perturbation method
Keywords: breaking effect, electron-ion collisions, numerical simulation, particle method.
@article{MM_2018_30_10_a4,
     author = {A. A. Frolov and E. V. Chizhonkov},
     title = {The effect of electron-ion collisions on the breaking of cylindrical plasma oscillations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {86--106},
     publisher = {mathdoc},
     volume = {30},
     number = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_10_a4/}
}
TY  - JOUR
AU  - A. A. Frolov
AU  - E. V. Chizhonkov
TI  - The effect of electron-ion collisions on the breaking of cylindrical plasma oscillations
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 86
EP  - 106
VL  - 30
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_10_a4/
LA  - ru
ID  - MM_2018_30_10_a4
ER  - 
%0 Journal Article
%A A. A. Frolov
%A E. V. Chizhonkov
%T The effect of electron-ion collisions on the breaking of cylindrical plasma oscillations
%J Matematičeskoe modelirovanie
%D 2018
%P 86-106
%V 30
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_10_a4/
%G ru
%F MM_2018_30_10_a4
A. A. Frolov; E. V. Chizhonkov. The effect of electron-ion collisions on the breaking of cylindrical plasma oscillations. Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 86-106. http://geodesic.mathdoc.fr/item/MM_2018_30_10_a4/

[1] R.C. Davidson, Methods in Nonlinear Plasma Theory, Academic Press, New-York–London, 1972, 356 pp.

[2] Ia.B. Zeldovich, A.D. Myshkis, Elementy matematicheskoi fiziki, Nauka, M., 1973, 352 pp.

[3] A. I. Akhiezer, R. V. Polovin, “Theory of wave motion of an electron plasma”, Sov. Phys. JETP, 3:5 (1956), 696–705

[4] J.M. Dawson, “Nonlinear electron oscillations in a cold plasma”, Phys. Review, 113:2 (1959), 383–387

[5] G. Lehmann, E.W. Laedke, K.H. Spatschek, “Localized wake-field excitation and relativistic wave-breaking”, Phys. Plasmas, 14:10 (2007), 103109, 9 pp.

[6] L.M. Gorbunov, A.A. Frolov, E.V. Chizhonkov, N. E. Andreev, “Breaking of nonlinear cylindrical plasma oscillations”, Plasma Phys. Reports, 36:4 (2010), 345–356

[7] A.A. Frolov, E.V. Chizhonkov, “O reliativistskom oprokidyvanii elektronnykh kolebanii v plazmennom sloe”, Vychisl. Metody Programm., 15 (2014), 537–548

[8] E. Infeld, G. Rowlands, A.A. Skorupski, “Analytically solvable model of nonlinear oscillations in a cold but viscous and resistive plasma”, Phys. Rev. Lett., 102:14 (2009), 145005, 4 pp.

[9] P.S. Verma, J.K. Soni, S. Segupta, P.K. Kaw, “Nonlinear oscillations in a cold dissipative plasma”, Phys. Plasmas, 17:4 (2010), 044503, 4 pp.

[10] A.A. Frolov, E.V. Chizhonkov, “Influence of electron collisions on the breaking of plasma oscillations”, Plasma Phys. Reports, 44:4 (2018), 398–404

[11] N.N. Bogoliubov, Iu.A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974, 504 pp.

[12] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, McGraw-Hill Inc., New York, 1981, 523 pp.

[13] A.F. Aleksandrov, L.S. Bogdankevich, A.A. Rukhadze, Osnovy elektrodynamiki plazmy, Vys. shkola, M., 1978, 407 pp.

[14] V.L. Ginzburg, A.A. Rukhadze, Volny v magnitoactivnoi plazme, Nauka, M., 1975, 256 pp.

[15] V.P. Silin, Vvedenie v kinetichkuiu teoriiu gazov, Nauka, M., 1971, 332 pp.

[16] V.P. Silin, A.A. Rukhadze, Electromagnitnye svoistva plazmy i plasmopodobnykh sred, Izd. 2-e ispr., Knizhnyi dom «LIBROKOM», M., 2012, 248 pp.

[17] S.I. Braginskii, “Iavleniia perenosa v plazme”, Voprosy teorii plazmy, Gosatomizdat, M., 1963, 183–285

[18] B.L. Rozhdestvenskii, N.N. Ianenko, Sistemy kvazilineinykh uravnenii i ikh prilozheniia k gazhovoi dinamike, Nauka, M., 1968, 592 pp.

[19] E.V. Chizhonkov, “Diagnostics of a gradient catastrophe for a class of quasilinear hyperbolic systems”, Rus. J. Numer. Anal. Math. Modelling, 32:1 (2017), 13–26

[20] N.S. Bakhvalov, A.A. Kornev, E.V. Chizhonkov, Chislennye metody. Reshenie zadach i uprazhneniia, Klassicheskii universitetskii uchebnik, Izd. 2-e, pererab. i dopoln., Laboratoriia znanii, M., 2016, 352 pp.