An adaptive Chebyshev iterative method
Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 67-85

Voir la notice de l'article provenant de la source Math-Net.Ru

For the numerical solution of a boundary-value problem of three-dimensional elliptic equations an adaptive Chebyshev iterative method is constructed. In this adaptive method, the unknown lower bound of the spectrum of the discrete operator is refined in the additional cycle of the iterative method; the upper bound of the spectrum is taken to be its estimate by the Gershgorin theorem. Such procedure ensures the convergence of the constructed adaptive method with computational costs close to the costs of the Chebyshev method, which uses the exact boundaries of the spectrum of the discrete operator.
Mots-clés : elliptic equations
Keywords: Chebyshev polynomials, adaptive method.
@article{MM_2018_30_10_a3,
     author = {V. T. Zhukov and N. D. Novikova and O. B. Feodoritova},
     title = {An adaptive {Chebyshev} iterative method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {67--85},
     publisher = {mathdoc},
     volume = {30},
     number = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_10_a3/}
}
TY  - JOUR
AU  - V. T. Zhukov
AU  - N. D. Novikova
AU  - O. B. Feodoritova
TI  - An adaptive Chebyshev iterative method
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 67
EP  - 85
VL  - 30
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_10_a3/
LA  - ru
ID  - MM_2018_30_10_a3
ER  - 
%0 Journal Article
%A V. T. Zhukov
%A N. D. Novikova
%A O. B. Feodoritova
%T An adaptive Chebyshev iterative method
%J Matematičeskoe modelirovanie
%D 2018
%P 67-85
%V 30
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_10_a3/
%G ru
%F MM_2018_30_10_a3
V. T. Zhukov; N. D. Novikova; O. B. Feodoritova. An adaptive Chebyshev iterative method. Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 67-85. http://geodesic.mathdoc.fr/item/MM_2018_30_10_a3/