Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_10_a3, author = {V. T. Zhukov and N. D. Novikova and O. B. Feodoritova}, title = {An adaptive {Chebyshev} iterative method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {67--85}, publisher = {mathdoc}, volume = {30}, number = {10}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_10_a3/} }
V. T. Zhukov; N. D. Novikova; O. B. Feodoritova. An adaptive Chebyshev iterative method. Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 67-85. http://geodesic.mathdoc.fr/item/MM_2018_30_10_a3/
[1] V.T. Zhukov, N.D. Novikova, O.B. Feodoritova, “Multigrid method for anisotropic diffusion equations based on adaptive Chebyshev smoothers”, Mathematical Models and Computer Simulations, 7:2 (2015), 117–127
[2] V.T. Zhukov, N.D. Novikova, O.B. Feodoritova, “Multigrid method for elliptic equations with anisotropic discontinuous coefficients”, Computational Mathematics and Mathematical Physics, 55:7 (2015), 1150–1163
[3] V.T. Zhukov, N.D. Novikova, O.B. Feodoritova, “On the solution of evolution equations based on multigrid and explicit iterative methods”, Computational Mathematics and Mathematical Physics, 55:8 (2015), 1276–1289
[4] V.T. Zhukov, M.M. Krasnov, N.D. Novikova, O.B. Feodoritova, “Algebraicheskii mnogosetochnyi metod s adaptivnymi sglazhivateliami na osnove mnogochlenov Chebysheva”, IPM im. M.V. Keldysha RAN, 2016, 113, 32 pp. | DOI
[5] A.H. Baker, R.D. Falgout, T. Gamblin, T.V. Kolev, M. Schulz, U.M. Yang, “Scaling Algebraic Multigrid Solvers: On the Road to Exascale”, Competence in High Performance Computing 2010, Springer, Berlin–Heidelberg, 2011, 215–226
[6] A. Baker, R. Falgout, T. Kolev, U. Yang, “Multigrid smoothers for ultra-parallel computing”, SIAM J. Sci. Comput., 33:5 (2011), 2864–2887
[7] F.R. Gantmakher, Teoriya matrits, Nauka, M., 1966, 576 pp.; F.R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing; Reprinted by American Mathematical Society, 2000, 660 pp.
[8] A.A. Samarskii, E.S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978, 592 pp.; A.A. Samarskii, E.S. Nikolaev, Numerical Methods for Grid Equations, v. 1, Direct Methods, Birkhauser Verlag, Basel–Boston–Berlin, 1989, 242 pp.; v. 2, Iterative Methods, 502 pp.
[9] P.L. Chebyshev, Voprosy o naimen'shih velichinah, svyazannye s priblizhennym predstavleniem funkcij, v. 1, Sochineniya, SPb., 1899, 705–710
[10] A.S. Shvedov, V.T. Zhukov, “Explicit iterative difference schemes for parabolic equations”, Russian J. Numer. Anal. Math. Modeling, 13:2 (1998), 133–148
[11] L.F. Richardson, “The approximate arithmetical solution by finite differences of physical problems involving differential equations with an application to the stresses in a masonry dam”, Roy. Soc. Philos. Trans. A, 210 (1910), 307–357
[12] M.K. Gavurin, “Primenenie polinomov nailuchshego priblizheniia k uluchsheniiu skhodimosti iterativnykh protsessov”, UMN, 5:3(37) (1950), 156–160
[13] D. Flanders, G. Shortley, “Numerical determination of fundamental modes”, Appl. Phys., 21:12 (1950), 1326–1332
[14] G.H. Shortley, “Use of Tschebyscheff-polynomial operators in the solution of boundary value problems”, J. Appl. Phys., 24 (1953), 392–396.
[15] D.M. Young, “On Richardson's method for solving linear systems with positive definite matrices”, Math. Phys., 32:4 (1954), 243–255
[16] V.I. Lebedev, S.A. Finogenov, “O poriadke vybora iteratsionnykh parametrov v chebyshevskom tsiklicheskom metode”, Zh. vychisl. mat. i mat. fiz. матем., 11:2 (1971), 425–438
[17] E.S. Nikolaev, A.A. Samarskii, “Vybor iteratsionnykh parametrov v metode Richardsona”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 960–973
[18] Yuan' Chzhao-din, Nekotorye raznostnye skhemy resheniya pervoj kraevoj zadachi dlya linejnyh differencial'nyh uravnenij s chastnymi proizvodnymi, Diss. na soisk. uchenoj stepeni kand. fiz.-mat. nauk, MGU, M., 1958
[19] Yuan' Chzhao-din, “Nekotorye raznostnye skhemy chislennogo resheniya differencial'nogo uravneniya parabolicheskogo tipa”, Matem. sbornik, 50 (92):4 (1960), 391–422
[20] Yuan' Chzhao-din, “Ob ustojchivosti raznostnyh skhem dlya resheniya differencial'nyh uravnenij parabolicheskogo tipa”, DAN SSSR, 117:4 (1957), 578–581
[21] V.K. Saul'ev, Integrirovanie uravnenij parabolicheskogo tipa metodom setok, ed. Lyusternik L. A., Fizmatgiz, M., 1960, 324 pp.
[22] L.A. Lyusternik, “Zamechaniya k chislennomu resheniyu kraevyh zadach uravneniya Laplasa i vychisleniyu sobstvennyh znachenij metodom setok”, Tr. Matem. in-ta im. V.A. Steklova, 20 (1947), 49–64
[23] N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobelkov, Chislennye metody, Nauka, M., 1987, 600 pp.
[24] J. Demmel, Applied Numerical Linear Algebra, SIAM, 1997, 431 pp.
[25] R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klofkorn, G. Manzini, 3D Benchmark on Discretization Schemes for Anisotropic Diffusion Problems on General Grids, , 2011 hal-00580549
[26] V.T. Zhukov, N.D. Novikova, O.B. Feodoritova, “Adaptivnyj chebyshevskij algoritm”, Preprint IPM im. M.V. Keldysha RAN, 2017, 32 pp.