Multiple parametric mathematical model of the process of consolidation of inhomogeneous soils
Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 44-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The basic equations of consolidation of saline soils are compiled for three cases: the phases are incompressible, the effect of the initial pressure gradient is not very significant, the phases are compressible; the influence of the initial pressure gradient is significant. A new nonlinear relationship is established between the sum of the principal stresses and the porosity coefficient, which simultaneously describes three types of inhomogeneity. A function is proposed that characterizes the change in the age of the soil skeleton as a function of spatial coordinates. Properties of the creep parameters included in this dependence are described. It is proved that the property of an inhomogeneous old soil can be described by functions of spatial coordinates. On the basis of this dependence, and based on existing and developed models, a multi-parameter mathematical model of the process of consolidation of soils is constructed, containing previously existing ones. The questions of existence, uniqueness and correctness for the boundary value problem are investigated. The methods of its solution are justified. The possibility of applying the methods of iteration, total approximation and sweep has been proved. The approximation error, stability and convergence of a locally one-dimensional scheme (VOC) are investigated. An estimate of the solution of the problem is given using the sweep formula.
Keywords: soil mechanics, mathematical model, boundary-value problems.
Mots-clés : consolidation
@article{MM_2018_30_10_a2,
     author = {Sh. Altynbekov},
     title = {Multiple parametric mathematical model of the process of consolidation of inhomogeneous soils},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--66},
     publisher = {mathdoc},
     volume = {30},
     number = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_10_a2/}
}
TY  - JOUR
AU  - Sh. Altynbekov
TI  - Multiple parametric mathematical model of the process of consolidation of inhomogeneous soils
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 44
EP  - 66
VL  - 30
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_10_a2/
LA  - ru
ID  - MM_2018_30_10_a2
ER  - 
%0 Journal Article
%A Sh. Altynbekov
%T Multiple parametric mathematical model of the process of consolidation of inhomogeneous soils
%J Matematičeskoe modelirovanie
%D 2018
%P 44-66
%V 30
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_10_a2/
%G ru
%F MM_2018_30_10_a2
Sh. Altynbekov. Multiple parametric mathematical model of the process of consolidation of inhomogeneous soils. Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 44-66. http://geodesic.mathdoc.fr/item/MM_2018_30_10_a2/

[1] K. Tertsagi, Stroitelnaia mekhanika grunta, Gosstroiizdat, M., 1933, 392 pp.

[2] V.A. Florin, Osnovy mekhaniki gruntov, v. 1, Gosstroiizdat, M., 1959, 357 pp.

[3] V.A. Florin, “Osnovnye uravneniia dinamiki gruntovoi massy”, Izv. NIIG, 2, L., 1939, 190–196

[4] M.A. Biot, “General theory of three dimensional consolidation”, J. Appl. Phys., 12:2 (1941), 155–161

[5] M.A. Biot, “Consolidation render a Rectangular Load Distribution”, J. Appl. Phys., 12:5 (1941), 126–130

[6] Iu.K. Zaretskii, Teoriia konsolidatsii gruntov, Nauka, M., 1967, 269 pp.

[7] M.A. Zhuravlev, Matematicheskoe modelirovanie deformatsionnykh protsessov v tverdykh deformiruemykh sredakh, BGU, Minsk, 2002, 456 pp.

[8] V.E. Bykhovtsev i dr., Kompiuternoe modelirovanie sistem nelineinoi mekhaniki gruntov, Gomelskii gosudarstvennyi universitet im. F. Skorina, Gomel, 2002, 215 pp.

[9] V.E. Bykhovtsev i dr., “Mekhaniko-matematicheskaia model deformirovaniia grunta pri ego uplotnenii i uprochnenii”, Izvestiia Gomelskogo gosudarstvennogo universiteta im. F. Skorina, 2003, no. 5, 136–139

[10] V.E. Bykhovtsev i dr., “Integralnyi metod postroeniia matematicheskoi modeli i algoritma issledovaniia viazkouprugikh deformatsii gruntovykh osnovanii”, Vestnik BNTU, 2008, no. 4, 17–24

[11] P. M. Martiniuk, Matematicheskoe modelirovanie filtratsionnoi konsolidatsii gruntov s uchetom perenosa solei, avtoref. dis. ... kand.fiz.-mat.nauk, Institut kibernetiki im. V.M. Glushkova NAN Ukrainy, Kiev, 2002

[12] Sh.A. Altynbekov, Ob odnoi mnogoparametricheskoi matematicheskoi modeli protsessa konsolidatsii neodnorodnykh gruntov, Teoreticheskaia i prikladnaia mekhanika, 30, BNTU, Minsk, 2015, 352 pp.

[13] N.M. Gersevanov, Osnovy dinamiki gruntovoi massy, Gosstroiizdat, M.–L., 1937, 212 pp.

[14] V.A. Florin, “Osnovnoe uravnenie konsolidatsii zemlianoi sredy”, Dokl. AN SSSR, 1 (1948), 21–24

[15] V.A. Florin, Osnovy mekhaniki gruntov, v. 2, Gosstroiizdat, M., 1961, 543 pp.

[16] S.R. Meschian, Polzuchest glinistykh gruntov, Izd-vo AN Arm. SSR, Erevan, 1967, 318 pp.

[17] S.R. Meschian, Eksperimentalnaia reologiia glinistykh gruntov, Nedra, M., 1985, 347 pp.

[18] T.Sh. Shirinkulov, Iu.K. Zaretskii, Polzuchest i konsolidatsiia gruntov, FAN, Tashkent, 1986, 387 pp.

[19] M.Iu. Abelev, Stroitelstvo promyshlennykh i grazhdanskikh sooruzhenii na slabykh vodonasyshchennykh gruntakh, Stroiizdat, M., 1983, 247 pp.

[20] A.L. Goldin, L.N. Rasskazov, Proektirovanie gruntovykh plotin, Energoatomizdat, M., 1987, 303 pp.

[21] S.A. Roza, Raschet osadki sooruzhenii gidroelektrostantsii, Gosenergoizdat, M., 1959, 330 pp.

[22] Sh. Altynbekov, E. Kurmysh, K. Abdrakhmanov i dr., “Vliianie nachalnogo gradienta napora na uplotnenie neodnorodnogo grunta”, Matematicheskoe modelirovanie i kraevye zadachi, v. 1, Samarskii gosudarstvennyi tekhnicheskii universitet, Samara, 2009, 16–26

[23] Sh. Altynbekov, Ob odnoi zadache sopriazhenii teorii filtratsionnoi konsolidatsii plotnykh glinistykh neodnorodnykh gruntov, Teoreticheskaia i prikladnaia mekhanika, 31, BNTU, Minsk, 2016, 352 pp.

[24] Sh. Altynbekov, “O metodike resheniia odnomernoi kvazilineinoi zadachi konsolidatsii neodnorodnogo grunta s uchetom nachalnogo gradienta napora i opredelenie ego osadka”, Izv. NAN RK. Seriia fiziko-matematicheskaia, 2016, no. 2 (306), 10–20

[25] Sh. Altynbekov, Voprosy sushchestvovaniia, edinstvennosti i korrektnosti dlia nelineinoi kraevoi zadachi mekhaniki uplotniaemykh sred, dep. rukop. No 3297, VINITI AN SSSR, M., 1985, 16 pp.

[26] Sh. Altynbekov, “Matematicheskaia postanovka zadachi vibrokonsolidatsii solenykh gruntov i metody ee resheniia”, dis. ... kand., Problemy matematicheskogo analiza, 85, Izd-vo «Tamara Rozhkovskaia», Novosibirsk, 2016, 138 pp.

[27] Sh. Altynbekov, “Mathematical Statement and Methods of Solution of the Vibroconsolidation Problem for Salty Soils”, J. of Math. Sciences, 219:1 (2016), 1–13

[28] Sh. Altynbekov, T. Sh. Shirinkulov, “Ob odnom iteratsionnom metode nelineinykh kraevykh zadach konsolidatsii gruntov”, DAN RUz. Matematika. Tekhnicheskie nauki. Estestvoznanie, 1996, no. 1–2, 25–27

[29] A.A. Samarskii, The theory of difference schemes, 1 edition, CRC Press, 2001, 788 pp.

[30] Sh. Altynbekov, O primenenii lokalno-odnomernogo metoda k resheniiu kraevoi zadachi mekhaniki uplotniaemykh sred, dep. rukop. No 3298, VINITI AN SSSR, M., 1985, 27 pp.