The model of the radiation transport in the matter of heterogeneous materials of the porous type
Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The physical and geometrical models of the heterogeneous porous medium with direct view of its microstructure are worked out. The algorithm of calculating the energy and pulse probability distributions for the particles interacting with the complex chemical compound is developed. The distributions are used for detail modeling of the scattering and absorption processes in complex heterogeneous materials. An approach for the discrete description of the realistic geometry of the heterogeneous porous medium with direct view of its structure at the micro level is elaborated. The approach includes the algorithm of build the detector system for statistical estimation of the radiation energy deposit in an irradiated object. The applications of the developed simulation tool are presented in terms of results obtained with use of the hybrid computing cluster K-100.
Mots-clés : radiation transport
Keywords: porous medium, material micro structure.
@article{MM_2018_30_10_a0,
     author = {M. E. Zhukovskiy and R. V. Uskov and E. B. Savenkov and M. V. Alekseev and M. B. Markov and F. N. Voronin},
     title = {The model of the radiation transport in the matter of heterogeneous materials of the porous type},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {30},
     number = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_10_a0/}
}
TY  - JOUR
AU  - M. E. Zhukovskiy
AU  - R. V. Uskov
AU  - E. B. Savenkov
AU  - M. V. Alekseev
AU  - M. B. Markov
AU  - F. N. Voronin
TI  - The model of the radiation transport in the matter of heterogeneous materials of the porous type
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 3
EP  - 20
VL  - 30
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_10_a0/
LA  - ru
ID  - MM_2018_30_10_a0
ER  - 
%0 Journal Article
%A M. E. Zhukovskiy
%A R. V. Uskov
%A E. B. Savenkov
%A M. V. Alekseev
%A M. B. Markov
%A F. N. Voronin
%T The model of the radiation transport in the matter of heterogeneous materials of the porous type
%J Matematičeskoe modelirovanie
%D 2018
%P 3-20
%V 30
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_10_a0/
%G ru
%F MM_2018_30_10_a0
M. E. Zhukovskiy; R. V. Uskov; E. B. Savenkov; M. V. Alekseev; M. B. Markov; F. N. Voronin. The model of the radiation transport in the matter of heterogeneous materials of the porous type. Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2018_30_10_a0/

[1] M.E. Zhukovskiy, S.V. Podoliako, R.V. Uskov, “Model of individual collisions for description of electron transport in matter”, Mathematical Models and Computer Simulations, 4:1 (2012), 101–109

[2] M.E. Zhukovskiy, R.V. Uskov, “Modelirovanie vzaimodeistviia gamma-izlucheniia s veshchectvom na gibridnykh vychislitelnykh systemakh”, Matematicheskoe modelirovanie, 23:7 (2011), 20–32

[3] M.E. Zhukovskiy, R.V. Uskov, “Matematicheskoe modelirovanie radiatsionnoi emissii elektronov na gibridnyh supercomputerakh”, Vychislitelnye metody i programmirovanie, 13:1 (2012), 189–197

[4] M.E. Zhukovskiy, S.V. Podoliako, R.V. Uskov, “Modelirovanie perenosa elektronov v veshchestve na gibridnykh vuchislitelnykh sistemah”, Vychislitelnye metody i programmirovanie, 12:1 (2011), 152–159

[5] M.E. Zhukovskiy, R.V. Uskov, “Hybrid Parallelization of the Algorithms of Radiation Cascade Transport Modeling”, Mathematical Models and Computer Simulations, 7:6 (2015), 601–610

[6] D.E. Cullen, J.H. Hubbell, L.D. Kissel, EPDL97: the Evaluated Photon Data Library, '97 Version, UCRL-50400, v. 6, rev. 5, Lawrence Livermore National Laboratory, 1997, 36 pp.

[7] I.M. Sobol, Chislennye metody Monte-Carlo, Nauka, M., 1973, 312 pp.

[8] “PENELOPE — A Code System for Monte Carlo Simulation of Electron and Photon Transport”, Workshop Proceedings (Issy-les-Moulineaux, France, 5–7 November 2001)

[9] Geant4 User's Guide for Application Developers. Geant4 Collaboration. Version: geant4 10.0.6, , 2013 http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/index.html

[10] M.S. Seltzer, “An Overview of ETRAN Monte Carlo Methods”, Monte Carlo Transport of Electrons and Photons, eds. T.M. Jenkins, W.R. Nelson, A. Rindi, Plenum Press, New York, 1988, 153 pp.

[11] J.A. Halbleib, R.P. Kensek, T.A. Mehlhom, G.D. Valdez, S.M. Seltzer, M. J. Berger, ITS version 3.0: the integrated TIGER series of coupled electron/photon Monte Carlo transport codes, Report SAND91-1634, Sandia National Laboratories, Albuquerque, 1992

[12] J.F. Briesmeister (ed.), MCNP — A General Monte Carlo N-Particle Transport Code, LANL Report LA-13709-M, Los Alamos, 2000

[13] F.H. Stillinger, B.D. Lubachevsky, “Crystalline-Amorphous Interface Packings for Disks and Spheres”, J. Stat. Phys., 73:3–4 (1993), 497–514

[14] B.D. Lubachevsky, F.H. Stillinger, “Geometric properties of random disk packings”, J. Statistical Physics, 60 (1990), 561–583

[15] B.D. Lubachevsky, “How to Simulate Billiards and Similar Systems”, Journal of Computational Physics, 94:2 (1991), 255–283

[16] M. Skoge, A. Donev, F.H. Stillinger, S. Torquato, “Packing hard spheres in high dimensional Euclidean spaces”, Phys. Rev. E, 74:4 (2006), 041127, 11 pp.

[17] F.P. Preparata, M. Shamos, Computational Geometry: An Introduction, Springer, 1985, 398 pp.

[18] M.E. Zhukovskiy, V.A. Egorova, “Handling of the radiative electron emission modeling results by use of the neural networks”, Mathematica Montisnigri, XXXVIII (2017), 89–99