Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_9_a6, author = {A. D. Savel'ev}, title = {Numerical simulation of the hypersonic flow above the aircraft at the high-altitude active movement}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {90--100}, publisher = {mathdoc}, volume = {29}, number = {9}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a6/} }
TY - JOUR AU - A. D. Savel'ev TI - Numerical simulation of the hypersonic flow above the aircraft at the high-altitude active movement JO - Matematičeskoe modelirovanie PY - 2017 SP - 90 EP - 100 VL - 29 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a6/ LA - ru ID - MM_2017_29_9_a6 ER -
A. D. Savel'ev. Numerical simulation of the hypersonic flow above the aircraft at the high-altitude active movement. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 90-100. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a6/
[1] P. Carriere, M. Serieix, “Effects aerodynamique de l'eclament d'un jet de fusee”, Recherce Aer., 89 (1962), 3–30
[2] R. Adams, Wind Tunnel Testing Tecniques for Gas-Particle Flows in Rocket Exhaust Plumes, AIAA paper, No 66-767, 1966, 24 pp.
[3] L. Alpinieri, R. Adams, “Flow Separation due to Jet Pluming”, AIAA J., 4:10 (1966), 1865–1866 | DOI
[4] W.F. Hinson, R.J. McGhee, Effects of jet pluming on the static stability of five rocket models at mach numbers of 4, 5, and 6 and static pressure rations up to 26000, NASA TN D-4064, 1967, 72 pp.
[5] R.C. Boger, H. Rosenbaum, B.L. Reeves, “Flow field interactions induced by underexpanded exhaust plumes”, AIAA J., 10:3 (1972), 300–306 | DOI
[6] A.N. Shliagun, “Vzaimodeistvie silno nedorasshirennoi sverkhzvukovoi strui so sputnym sverkhzvukovym i giperzvukovym potokom”, Uchenye zapiski TsAGI, X:3 (1979), 37–47
[7] J.M. Klineberg, T. Kubota, L. Lees, “Theory of exhaust-plumes/boundary-layer interactions at supersonic speeds”, AIAA J., 10:5 (1972), 581–588 | DOI
[8] P. Chzhen, Otryvnye techeniya, v. 1, Mir., M., 1972, 299 pp.; т. 2, 1973, 280 с.; 1973, т.3, 333; P.K. Chang, Separation of flow, Pergamon press, Oxford–New York, 1970, 777 pp. | Zbl
[9] J. Erdos, A. Pallone, “Shock-boundary layer interaction and flow separation”, Proc. Heat Transfer and Fluid Mechanics Inst., Univ. press, Standford, Calif., 1962, 239–254
[10] K.J. Plotkin, J.S. Draper, “Detachment of the outer shock from underexpanded rocket plumes”, AIAA J., 10:12 (1972), 1707–1709 | DOI
[11] E.V. Myshenkov, V.I. Myshrnkov, “Regimes of laminar flow separation due to jet exhaust”, Fluid Dynamics, 29:1 (1994), 103–107 | DOI
[12] E.V. Myshenkov, V.I. Myshrnkov, “Formation of lateral separation caused by a sustainer engine jet”, Fluid Dynamics, 30:4 (1995), 592–598 | DOI
[13] L.G. Loytsyansky, Mechanics of liquids and gases, Pergamon press, Oxford, 1966, 804 pp. | MR
[14] F.R. Menter, Zonal two equation $k$-$\omega$ turbulence models for aerodynamic flows, AIAA Paper 93-2906, 1993, 21 pp.
[15] J.L. Steger, “Implicit finite-difference simulation of flowabout arbitrary two-dimensional geometries”, AIAA J., 16:7 (1978), 679–686 | DOI | Zbl
[16] A.D. Savel'ev, “The use of high order composite compact schemes for computing supersonic jet interaction with a surface”, Comput. mathem. and mathem. physics, 53:10 (2013), 1558–1570 | DOI | DOI | MR | Zbl
[17] M.N. Mikhailovskaya, B.V. Rogov, “Monotone compact running schemes for systems of hyperbolic equatins”, Comput. mathem. and mathem. physics, 52:4 (2012), 578–600 | DOI | MR | Zbl
[18] S.K. Lele, “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI | MR
[19] A.D. Savel'ev, “On the structure of internal dissipation of composite compact schemes for gasdynamic simulation”, Comput. mathem. and mathem. physics, 49:12 (2009), 2135–2148 | DOI | MR