Numerical simulation of the hypersonic flow above the aircraft at the high-altitude active movement
Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 90-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical simulation of a hypersonic flow above an axially symmetrical body at existence of underaxpanded propulsion jet is carried out. For several consecutive points of the body’s route of rise the characteristics of the boundary layer separation arising on a side surface of a body are investigated. The Mach at the nozzle exit $6.5$. The Mach number of incoming flow changes from $4$ to $7$. Thus the Reynolds number changes from $2.5\times10^5$ to $3\times10^3$ and the ratio of nozzle exit pressure to ambient pressure from $350$ to $5\times10^4$. When the Mach number of the incident flow $\mathrm{M}_{\infty} = 4$ the range of variation of pressure ratio expands to the value of $10^6$. The case of replacement of a propulsion jet with the rigid simulator is considered. Information on the pressure ratios, which begins to form separation flow on the surface, the length of recirculation zone and pressure level in comparison with the existing empirical data are obtained. Shows a significant increase in separation zones in front of the jet when if is replaced by hard simulator of the same size.
Keywords: numerical simulation, Navier–Stokes equations, hyperbolic stream, underexpanded propulsion jet.
@article{MM_2017_29_9_a6,
     author = {A. D. Savel'ev},
     title = {Numerical simulation of the hypersonic flow above the aircraft at the high-altitude active movement},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {90--100},
     publisher = {mathdoc},
     volume = {29},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a6/}
}
TY  - JOUR
AU  - A. D. Savel'ev
TI  - Numerical simulation of the hypersonic flow above the aircraft at the high-altitude active movement
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 90
EP  - 100
VL  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a6/
LA  - ru
ID  - MM_2017_29_9_a6
ER  - 
%0 Journal Article
%A A. D. Savel'ev
%T Numerical simulation of the hypersonic flow above the aircraft at the high-altitude active movement
%J Matematičeskoe modelirovanie
%D 2017
%P 90-100
%V 29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a6/
%G ru
%F MM_2017_29_9_a6
A. D. Savel'ev. Numerical simulation of the hypersonic flow above the aircraft at the high-altitude active movement. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 90-100. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a6/

[1] P. Carriere, M. Serieix, “Effects aerodynamique de l'eclament d'un jet de fusee”, Recherce Aer., 89 (1962), 3–30

[2] R. Adams, Wind Tunnel Testing Tecniques for Gas-Particle Flows in Rocket Exhaust Plumes, AIAA paper, No 66-767, 1966, 24 pp.

[3] L. Alpinieri, R. Adams, “Flow Separation due to Jet Pluming”, AIAA J., 4:10 (1966), 1865–1866 | DOI

[4] W.F. Hinson, R.J. McGhee, Effects of jet pluming on the static stability of five rocket models at mach numbers of 4, 5, and 6 and static pressure rations up to 26000, NASA TN D-4064, 1967, 72 pp.

[5] R.C. Boger, H. Rosenbaum, B.L. Reeves, “Flow field interactions induced by underexpanded exhaust plumes”, AIAA J., 10:3 (1972), 300–306 | DOI

[6] A.N. Shliagun, “Vzaimodeistvie silno nedorasshirennoi sverkhzvukovoi strui so sputnym sverkhzvukovym i giperzvukovym potokom”, Uchenye zapiski TsAGI, X:3 (1979), 37–47

[7] J.M. Klineberg, T. Kubota, L. Lees, “Theory of exhaust-plumes/boundary-layer interactions at supersonic speeds”, AIAA J., 10:5 (1972), 581–588 | DOI

[8] P. Chzhen, Otryvnye techeniya, v. 1, Mir., M., 1972, 299 pp.; т. 2, 1973, 280 с.; 1973, т.3, 333; P.K. Chang, Separation of flow, Pergamon press, Oxford–New York, 1970, 777 pp. | Zbl

[9] J. Erdos, A. Pallone, “Shock-boundary layer interaction and flow separation”, Proc. Heat Transfer and Fluid Mechanics Inst., Univ. press, Standford, Calif., 1962, 239–254

[10] K.J. Plotkin, J.S. Draper, “Detachment of the outer shock from underexpanded rocket plumes”, AIAA J., 10:12 (1972), 1707–1709 | DOI

[11] E.V. Myshenkov, V.I. Myshrnkov, “Regimes of laminar flow separation due to jet exhaust”, Fluid Dynamics, 29:1 (1994), 103–107 | DOI

[12] E.V. Myshenkov, V.I. Myshrnkov, “Formation of lateral separation caused by a sustainer engine jet”, Fluid Dynamics, 30:4 (1995), 592–598 | DOI

[13] L.G. Loytsyansky, Mechanics of liquids and gases, Pergamon press, Oxford, 1966, 804 pp. | MR

[14] F.R. Menter, Zonal two equation $k$-$\omega$ turbulence models for aerodynamic flows, AIAA Paper 93-2906, 1993, 21 pp.

[15] J.L. Steger, “Implicit finite-difference simulation of flowabout arbitrary two-dimensional geometries”, AIAA J., 16:7 (1978), 679–686 | DOI | Zbl

[16] A.D. Savel'ev, “The use of high order composite compact schemes for computing supersonic jet interaction with a surface”, Comput. mathem. and mathem. physics, 53:10 (2013), 1558–1570 | DOI | DOI | MR | Zbl

[17] M.N. Mikhailovskaya, B.V. Rogov, “Monotone compact running schemes for systems of hyperbolic equatins”, Comput. mathem. and mathem. physics, 52:4 (2012), 578–600 | DOI | MR | Zbl

[18] S.K. Lele, “Compact finite difference schemes with spectral-like resolution”, J. Comput. Phys., 102 (1992), 16–42 | DOI | MR

[19] A.D. Savel'ev, “On the structure of internal dissipation of composite compact schemes for gasdynamic simulation”, Comput. mathem. and mathem. physics, 49:12 (2009), 2135–2148 | DOI | MR