Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_9_a5, author = {Yu. A. Pityuk and N. A. Gumerov and O. A. Abramova and I. Sh. Akhatov}, title = {Boundary element modeling of dynamics of a bubble contacting with a solid surface at low {Reynolds} numbers}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {77--89}, publisher = {mathdoc}, volume = {29}, number = {9}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a5/} }
TY - JOUR AU - Yu. A. Pityuk AU - N. A. Gumerov AU - O. A. Abramova AU - I. Sh. Akhatov TI - Boundary element modeling of dynamics of a bubble contacting with a solid surface at low Reynolds numbers JO - Matematičeskoe modelirovanie PY - 2017 SP - 77 EP - 89 VL - 29 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a5/ LA - ru ID - MM_2017_29_9_a5 ER -
%0 Journal Article %A Yu. A. Pityuk %A N. A. Gumerov %A O. A. Abramova %A I. Sh. Akhatov %T Boundary element modeling of dynamics of a bubble contacting with a solid surface at low Reynolds numbers %J Matematičeskoe modelirovanie %D 2017 %P 77-89 %V 29 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a5/ %G ru %F MM_2017_29_9_a5
Yu. A. Pityuk; N. A. Gumerov; O. A. Abramova; I. Sh. Akhatov. Boundary element modeling of dynamics of a bubble contacting with a solid surface at low Reynolds numbers. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 77-89. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a5/
[1] E.P. Prokopev, S.P. Timoshenkov, V.V. Kalugin, “Tekhnologiia KNI struktur”, Peterburgskii zhurnal elektroniki, 1 (2000), 8–25
[2] M. Kornfeld, L. Suvorov, “On the destructive action of cavitation”, J. Appl. Phys., 15 (1944), 495 | DOI
[3] L. Crum, “Surface oscillations and jet development in pulsating bubbles”, J. Phys., 41 (1979), 285–288
[4] E.B.V. Dussan, “The moving contact line: the slip boundary condition”, Journal of Fluid Mechanics, 77:4 (1976), 665–684 | DOI | Zbl
[5] E.B.V. Dussan, “On the spreading of liquids on solid surfaces: static and dynamic contact lines”, Ann. Rev. Fluid Mech., 11 (1979), 371–400 | DOI
[6] L.M. Hocking, “The damping of capillary-gravity waves at a rigid boundary”, J. Fluid Mech., 179 (1987), 253–263 | DOI | MR
[7] L.M. Hocking, “Waves produced by a vertically oscillating plate”, J. Fluid Mech., 179 (1987), 267–281 | DOI | Zbl
[8] L.M. Hocking, “The spreading of drops with intermolecular forces”, Physics of Fluids, 6:10 (1994), 3224–3228 | DOI | Zbl
[9] P.G.D. Gennes, “Wetting: statics and dynamics”, Rev. Mod. Phys., 57 (1985), 827–863 | DOI
[10] Y.D. Shikhmurzaev, “Moving contact lines in liquid/liquid/solid systems”, Journal of Fluid Mechanics, 334 (1997), 211–249 | DOI | MR | Zbl
[11] L.M. Hocking, “A moving fluid interface. The removal of the force singularity by a slip flow”, J. Fluid Mech., 79 (1977), 209–229 | DOI | Zbl
[12] C. Huh, S.G. Mason, “The steady movement of a liquid meniscus in a capillary tube”, J. Fluid Mech., 81 (1977), 401–419 | DOI
[13] H.P. Greenspan, “On the motion of a small viscous droplet that wets a surface”, Journal of Fluid Mechanics, 84:1 (1978), 125–143 | DOI | Zbl
[14] T. Young, “An essay on the cohesion of fluids”, Philos. Trans. R. Soc. London, 95 (1805), 65–87 | DOI
[15] R. Mettin, P.E. Frommhold, X. Xi, F. Cegla, H. Okorn-Schmidt, A. Lippert, F. Holsteyns, “Acoustic Bubbles: Control and Interaction with Particles Adhered to a Solid Substrate”, Ultra Clean Processing of Semiconductor Surfaces XI, Solid State Phenomena, 195, Switzerland, 2013, 161–164 | DOI
[16] F. Prabowo, C.-D. Ohl, “Surface oscillation and jetting from surface attached acoustic driven bubbles”, Ultrasonics Sonochemistry, 18 (2011), 431–435 | DOI
[17] S. Shklyaev, A.V. Straube, “Linear oscillations of a compressible hemispherical bubble on a solid substrate”, Phys. Fluids, 20 (2008), 052102 | DOI | Zbl
[18] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, New York, 1992, 271 pp. | MR | Zbl
[19] C. Pozrikidis, “Computation of the pressure inside bubbles and pores in Stokes flow”, J. Fluid Mech., 474 (2003), 319–337 | DOI | MR | Zbl
[20] Y.J. Liu, “A new fast multipole boundary element method for solving 2-D Stokes flow problems based on a dual BIE formulation”, Eng. Anal. Bound. Elem., 32 (2008), 139–151 | DOI | MR | Zbl
[21] H. Power, “The interaction of a deformable bubble with a rigid wall at small Reynolds number: a general approach via integral equations”, Eng. Anal. Bound. Elem., 19 (1997), 291–297 | DOI
[22] Yu.A. Itkulova, O.A. Abramova, N.A. Gumerov, “Boundary element simulations of compressible bubble dynamics in Stokes flow”, ASME 2013 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2013, IMECE2013-63200, V07BT08A010 | DOI
[23] O.A. Abramova, I.S. Akhatov, N.A. Gumerov, Yu.A. Itkulova (Pityuk), “BEM-based numerical study of three-dimensional compressible bubble dynamics in a Stokes flow”, Computational Mathematics and Mathematical Physics, 54:9 (2014), 1481–1488 | DOI | DOI | MR | Zbl
[24] R.I. Nigmatulin, Dinamika mnogofaznykh sistem, Nauka, M., 1987
[25] V.P. Zhitnikov, N.M. Sherykhalina, Modelirovanie techenii vesomoi zhidkosti s primeneniem metodov mnogokomponentnogo analiza, Nauchnoe izdanie, Ufa, 2009, 336 pp.