Boundary element modeling of dynamics of a bubble contacting with a solid surface at low Reynolds numbers
Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 77-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study the dynamics of surface attached acoustic driven bubble at low Reynolds numbers is considered. The approach is based on the boundary element method (BEM) for Stokes flows, which is especially effective for the numerical solution of problems in threedimensional case. However computation of compressible bubbles dynamics caused some difficulties in formulation due to the degeneration of conventional BEM for Stokes equations. In the present approach an additional relation based on the Lorenz reciprocity principle is used to resolve the problem. To describe the contact line dynamics a semi-empirical law of motion is used. Such approach allows one to bypass a known issue of nonintegrability stresses in the moving triple point. The behavior of a surface attached bubble in the cases of a pinned or moving contact line is studied. The developed method can be used for detailed study of the bubble dynamics in the contact with a solid wall in order to determine the optimal conditions and parameters of surface cleaning processes.
Keywords: bubble dynamics, contact angle, boundary element method, Stokes flow.
Mots-clés : solid surface
@article{MM_2017_29_9_a5,
     author = {Yu. A. Pityuk and N. A. Gumerov and O. A. Abramova and I. Sh. Akhatov},
     title = {Boundary element modeling of dynamics of a bubble contacting with a solid surface at low {Reynolds} numbers},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {77--89},
     publisher = {mathdoc},
     volume = {29},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a5/}
}
TY  - JOUR
AU  - Yu. A. Pityuk
AU  - N. A. Gumerov
AU  - O. A. Abramova
AU  - I. Sh. Akhatov
TI  - Boundary element modeling of dynamics of a bubble contacting with a solid surface at low Reynolds numbers
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 77
EP  - 89
VL  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a5/
LA  - ru
ID  - MM_2017_29_9_a5
ER  - 
%0 Journal Article
%A Yu. A. Pityuk
%A N. A. Gumerov
%A O. A. Abramova
%A I. Sh. Akhatov
%T Boundary element modeling of dynamics of a bubble contacting with a solid surface at low Reynolds numbers
%J Matematičeskoe modelirovanie
%D 2017
%P 77-89
%V 29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a5/
%G ru
%F MM_2017_29_9_a5
Yu. A. Pityuk; N. A. Gumerov; O. A. Abramova; I. Sh. Akhatov. Boundary element modeling of dynamics of a bubble contacting with a solid surface at low Reynolds numbers. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 77-89. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a5/

[1] E.P. Prokopev, S.P. Timoshenkov, V.V. Kalugin, “Tekhnologiia KNI struktur”, Peterburgskii zhurnal elektroniki, 1 (2000), 8–25

[2] M. Kornfeld, L. Suvorov, “On the destructive action of cavitation”, J. Appl. Phys., 15 (1944), 495 | DOI

[3] L. Crum, “Surface oscillations and jet development in pulsating bubbles”, J. Phys., 41 (1979), 285–288

[4] E.B.V. Dussan, “The moving contact line: the slip boundary condition”, Journal of Fluid Mechanics, 77:4 (1976), 665–684 | DOI | Zbl

[5] E.B.V. Dussan, “On the spreading of liquids on solid surfaces: static and dynamic contact lines”, Ann. Rev. Fluid Mech., 11 (1979), 371–400 | DOI

[6] L.M. Hocking, “The damping of capillary-gravity waves at a rigid boundary”, J. Fluid Mech., 179 (1987), 253–263 | DOI | MR

[7] L.M. Hocking, “Waves produced by a vertically oscillating plate”, J. Fluid Mech., 179 (1987), 267–281 | DOI | Zbl

[8] L.M. Hocking, “The spreading of drops with intermolecular forces”, Physics of Fluids, 6:10 (1994), 3224–3228 | DOI | Zbl

[9] P.G.D. Gennes, “Wetting: statics and dynamics”, Rev. Mod. Phys., 57 (1985), 827–863 | DOI

[10] Y.D. Shikhmurzaev, “Moving contact lines in liquid/liquid/solid systems”, Journal of Fluid Mechanics, 334 (1997), 211–249 | DOI | MR | Zbl

[11] L.M. Hocking, “A moving fluid interface. The removal of the force singularity by a slip flow”, J. Fluid Mech., 79 (1977), 209–229 | DOI | Zbl

[12] C. Huh, S.G. Mason, “The steady movement of a liquid meniscus in a capillary tube”, J. Fluid Mech., 81 (1977), 401–419 | DOI

[13] H.P. Greenspan, “On the motion of a small viscous droplet that wets a surface”, Journal of Fluid Mechanics, 84:1 (1978), 125–143 | DOI | Zbl

[14] T. Young, “An essay on the cohesion of fluids”, Philos. Trans. R. Soc. London, 95 (1805), 65–87 | DOI

[15] R. Mettin, P.E. Frommhold, X. Xi, F. Cegla, H. Okorn-Schmidt, A. Lippert, F. Holsteyns, “Acoustic Bubbles: Control and Interaction with Particles Adhered to a Solid Substrate”, Ultra Clean Processing of Semiconductor Surfaces XI, Solid State Phenomena, 195, Switzerland, 2013, 161–164 | DOI

[16] F. Prabowo, C.-D. Ohl, “Surface oscillation and jetting from surface attached acoustic driven bubbles”, Ultrasonics Sonochemistry, 18 (2011), 431–435 | DOI

[17] S. Shklyaev, A.V. Straube, “Linear oscillations of a compressible hemispherical bubble on a solid substrate”, Phys. Fluids, 20 (2008), 052102 | DOI | Zbl

[18] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge University Press, New York, 1992, 271 pp. | MR | Zbl

[19] C. Pozrikidis, “Computation of the pressure inside bubbles and pores in Stokes flow”, J. Fluid Mech., 474 (2003), 319–337 | DOI | MR | Zbl

[20] Y.J. Liu, “A new fast multipole boundary element method for solving 2-D Stokes flow problems based on a dual BIE formulation”, Eng. Anal. Bound. Elem., 32 (2008), 139–151 | DOI | MR | Zbl

[21] H. Power, “The interaction of a deformable bubble with a rigid wall at small Reynolds number: a general approach via integral equations”, Eng. Anal. Bound. Elem., 19 (1997), 291–297 | DOI

[22] Yu.A. Itkulova, O.A. Abramova, N.A. Gumerov, “Boundary element simulations of compressible bubble dynamics in Stokes flow”, ASME 2013 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2013, IMECE2013-63200, V07BT08A010 | DOI

[23] O.A. Abramova, I.S. Akhatov, N.A. Gumerov, Yu.A. Itkulova (Pityuk), “BEM-based numerical study of three-dimensional compressible bubble dynamics in a Stokes flow”, Computational Mathematics and Mathematical Physics, 54:9 (2014), 1481–1488 | DOI | DOI | MR | Zbl

[24] R.I. Nigmatulin, Dinamika mnogofaznykh sistem, Nauka, M., 1987

[25] V.P. Zhitnikov, N.M. Sherykhalina, Modelirovanie techenii vesomoi zhidkosti s primeneniem metodov mnogokomponentnogo analiza, Nauchnoe izdanie, Ufa, 2009, 336 pp.