Implementation of particle-in-cell method on unstructured grids for numerical modeling of plasma devices
Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Methods and algorithms in the basis of computer program that implements axisymmetric electrostatic variant of particle-in-cell method on unstructured triangular grids are presented. Within the framework of the considered approach the Poisson equation is approximated using finite volume method. For the solution of the discritized Poisson equation multigrid method is used. Trajectories of the particles are computed using non-relativistic Boris method. Methods of interpolation of electric field on unstructured grids and determination of space charge in the computational area are discussed. Special attention is paid to the features of the applied methods specific to axisymmetric geometry. Developed computer program is tested using the problem of plane diode operated in the space charge regime.
Keywords: particle-in-cell method, unstructured triangular grids, two-dimensional Child–Langmuir problem.
@article{MM_2017_29_9_a2,
     author = {A. S. Dikalyuk and S. E. Kuratov},
     title = {Implementation of particle-in-cell method on unstructured grids for numerical modeling of plasma devices},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {29},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a2/}
}
TY  - JOUR
AU  - A. S. Dikalyuk
AU  - S. E. Kuratov
TI  - Implementation of particle-in-cell method on unstructured grids for numerical modeling of plasma devices
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 33
EP  - 48
VL  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a2/
LA  - ru
ID  - MM_2017_29_9_a2
ER  - 
%0 Journal Article
%A A. S. Dikalyuk
%A S. E. Kuratov
%T Implementation of particle-in-cell method on unstructured grids for numerical modeling of plasma devices
%J Matematičeskoe modelirovanie
%D 2017
%P 33-48
%V 29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a2/
%G ru
%F MM_2017_29_9_a2
A. S. Dikalyuk; S. E. Kuratov. Implementation of particle-in-cell method on unstructured grids for numerical modeling of plasma devices. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 33-48. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a2/

[1] Penning F. M., “Ein neues manometer fur niedrige gasdrucke, insbesondere zwischen 10–3 and 10–5 mm”, Physica, 4:2 (1937), 71–75 | DOI

[2] Penning F. M., Moubis J. H. A., “Eine Neutronenrohre ohne pumpvorrichtung”, Physica, 4:11 (1937), 1190–1199 | DOI

[3] Rovey J. L., Ruzic B. P., Houlahan T. J., “Simple Penning Ion Source for Laboratory Research and Development Applications”, Review of Scientific Instruments, 78 (2007), 106101-1–106101-3 | DOI

[4] Rovey J. L., “Design parameter investigation of a cold-cathode Penning ion source for general laboratory applications”, Plasma Sources Sci. Technol., 17 (2008), 035009-1–035009-7 | DOI

[5] Berezin Iu.A., Vshivkov V. A., Metod chastits v dinamike razrezhennoi plazmy, Nauka, Novosibirsk, 1980

[6] Hockney R. W., Eastwood J. W., Computer simulation using particles, CRC Press, New York, 1987

[7] Birdsall C. K., Langdon A. B., Plasma Physics Via Computer Simulation, McGrawHill, Inc., New York, 1985

[8] Grigoriev Iu.N., Vshivkov V. A., Fedoruk M. P., Numerical “Particle-In-Cell” Methods: Theory and Applications, VSP, Utrecht–Boston, 2002 | MR

[9] Raizer Yu.P., Surzhikov S. T., “Magnetohydrodynamic Description of Collisionless Plasma Expansion in Upper Atmosphere”, AIAA Journal, 33:3 (1995), 486–490 | DOI

[10] Surzhikov S. T., Expansion of multi-charged plasma clouds into ionospheric plasma with magnetic field, AIAA Paper, No 97-2361, 1997

[11] Surzhikov S. T., “Collisionless expansion of a plasma with doubly charged ions in a rarefied magnetized plasma”, Plasma Phys. Rep., 26:9 (2000), 759–771 | DOI

[12] Birdsall C. K., “Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions With Neutral Atoms, PIC-MCC”, IEEE Transactions on Plasma Science, 19:2 (1991), 65–85 | DOI

[13] Donko Z., “Particle simulation methods for studies of low-pressure plasma sources”, Plasma Sources Sci. Technol., 20 (2011), 024001, 15 pp. | DOI

[14] Vahedi V., Surendra M., “A Monte Carlo collision model for the particle in cell method: applications to argon and oxygen discharges”, Computer Physics Communications, 87 (1995), 179–198 | DOI

[15] Vahedi V., DiPeso G., Birdsall C. K., Lieberman M. A., Rognlien T. D., “Capacitive RF discharge modelled by particle-in-cell Monte Carlo simulation. I: analysis of numerical techniques”, Plasma Sources Sci. Technol., 2 (1993), 261–272 | DOI

[16] Vahedi V., Birdsall C. K., Lieberman M. A., DiPeso G., Rognlien T. D., “Capacitive RF discharge modelled by particle-in-cell Monte Carlo simulation. II: comparisons with laboratory measurements of electron energy distribution function”, Plasma Sources Sci. Technol., 2 (1993), 273–278 | DOI

[17] Burau H., Widera R., Honig W., Juckeland G., Debus A., Kluge T., Schramm U., Cowan T. E., Sauerbrey R., Bussmann M., “PIConGPU: A Fully Relativistic Particle-in-Cell Code for a GPU Cluster”, IEEE Transactions on Plasma Science, 38:10 (2010), 2831–2839 | DOI

[18] Surmin I. A., Bastrakov S. I., Efimenko E. S., Gonoskov A. A., Korzhimanov A. V., Meyerov I. B., “Particle-in-Cell laser-plasma simulation on Xeon Phi coprocessors”, Computer Physics Communications, 202 (2016), 204–210 | DOI

[19] Pfeiffer M., Mirza A., Munz C.-D., Fasoulas S., “Two statistical particle split and merge methods for Particle-in-Cell codes”, Computer Physics Communications, 191 (2015), 9–24 | DOI | MR | Zbl

[20] Jacobs G. B., Hesthaven J. S., “High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids”, Journal of Computational Physics, 214 (2006), 96–121 | DOI | MR | Zbl

[21] Versteeg H. K., Malalasekera W., An Introduction to Computational Fluid Dynamics, 2nd ed., Pearson Education Limited, Harlow, 2007

[22] Fedorenko R. P., “Relaksatsionnyi metod resheniia raznostnykh ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 1:5 (1961), 922–927 | Zbl

[23] Fedorenko R. P., “O skorosti skhodimosti odnogo iteratsionnogo protsessa”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 559–564

[24] Mavriplis D. J., Multigrid Techniques for Unstructured Meshes, NASA-CR-195070, Hampton, 1995, 63 pp.

[25] Sutherland I. E., Hodgman G. W., “Reentrant Polygon Clipping”, Communication of ACM, 17:1 (1974), 32–42 | DOI | Zbl

[26] Ramshaw J. D., “Conservative Rezoning Algorithm for Generalized Two-Dimensional Meshes”, Journal of Computational Physics, 59 (1985), 193–199 | DOI | MR | Zbl

[27] Elbery D., Intersection of Convex Objects: The Method of Separating Axes — Geometric Tools, LLC, 2008

[28] Delzanno G. L., Camporeale E., “On particle movers in cylindrical geometry for Particle-In-Cell simulations”, Journal of Computational Physics, 253 (2013), 259–277 | DOI | MR | Zbl

[29] Holmes D. G., Connell S. D., Solution of the 2-D Navier-Stokes Equations on Unstructured Adaptive Grids, AIAA Paper, No 89-1392, 1989

[30] Rausch R. D., Batina J. T., Yang H. T. Y., Spatial adaption procedures on unstructured meshes for accurate unsteady aerodynamic flow computation, AIAA paper, No 1991-1106, 1991

[31] Spirkin A. M., A three-dimensional particle-in-cell methodology on unstructured Voronoi grids with applications to plasma microdevices, PhD Thesis, Worcester Polytechnic Institute, Worcester, 2006

[32] Nanby K., “Probability Theory of Electron-Molecules, Ion-Molecule, Molecule-Molecule, and Coulomb Collisions for Particle Modeling of Materials Processing Plasmas and Gases”, IEEE Transactions on Plasma Science, 28:3 (2000), 971–990 | DOI

[33] Bromley B. P., Computational modeling of the axial-cylindrical inertial electrostatic confinement fusion neutron generator, PhD thesis, University of Illinois at Urbana-Champaign, Urbana–Champaign, 2001 | Zbl

[34] Luginsland J. W., Lau Y. Y., Gilgenbach R. M., “Two-Dimensional Child-Langmuir Law”, Physical Review Letters, 77:22 (1996), 4668–4670 | DOI

[35] Li Y., Wang H., Liu C., Sun J., “Two-dimensional Child-Langmuir law of planar diode with finite-radius emitter”, Applied Surface Science, 251 (2005), 19–23 | DOI

[36] Lau Y. Y., “Simple Theory of the Two-Dimensional Child-Langmuir Law”, Physical Review Letters, 87:27 (2001), 278301-1–278301-3 | DOI

[37] Jaffe G., “On the Currents Carried by Electrons of Uniform Initial Velocity”, Physical Review, 65:3–4 (1944), 91–98 | DOI

[38] Kostov K. G., Barroso J. J., “Space-charge-limited current in cylindrical diodes with finite-length emitter”, Physics of Plasmas, 9:3 (2002), 1039–1042 | DOI

[39] Watrous J. J., Lugisland J. W., Sasser III G. E., “An improved space-charge-limited emission algorithm for use in particle-in-cell codes”, Physics of Plasmas, 8:1 (2001), 289–296 | DOI

[40] Ragan-Kelley B., Verboncoueur J., Feng Y., “Two-dimensional axisymmetric Child-Langmuir scaling law”, Physics of Plasmas, 16 (2009), 103102-1–103102-6 | DOI

[41] Irishkov S. V., “Polnostiu kineticheskaia model dinamiki plazmy v razriade uskoritelia plazmy s zamknutym dreifom electronov”, Matem. modelirovanie, 18:6 (2006), 70–84 | Zbl

[42] Dikalyuk A., Surzhikov S. T., The modeling of dust particles in a normal glow discharge: the comparison of two charged models, AIAA paper, No 2010-4310, 2010

[43] Inkov L. V., “Metody rascheta samosoglasovannogo elektricheskogo polia v zadachakh kineticheskogo modelirovania pylevoi plazmy”, Matem. modelirovanie, 15:7 (2003), 46–54 | Zbl

[44] Kreondel Iu. E., Ionov A. S., “Nekotorie osobennosti razriada v trubkakh tipa Penninga pri nizkikh davleniakh”, ZhTF, 34:7 (1964), 1199–1205

[45] Mamedov N. V., Shchitov N. N., Kanshin I. A., “Issledovanie zavisimostei eksplutatsionnykh kharakteristik istochnikov ionov Penninga ot ego geometricheskikh parametrov”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 16:4 (2015)

[46] Markov V. G., Prokhorovich D. E., Sadilkin A. G., Shchitov N. N., “Opredelenie energeticheskikh kharakteristik korpuskuliarnoi emissii iz ionnykh istochnikov gazonapolnennykh neitronnykh trubok”, Uspekhi prikladnoi fiziki, 1:1 (2013)

[47] Dolgov A. N., Markov V. G., Okulov A. A., Prokhorovich D. E., Sadilkin A. G., Iurkov D. I., Vizgalov I. V., Rashchikov V. I., Mamedov N. V., Kolodko D. V., “Kompleksnyi podhod v izuchenii dinamiki korpuskuliarnogo puchka v ionno-opticheskoi sisteme neitronnoi trubki”, Uspekhi prikladnoi fiziki, 2:3 (2014)

[48] Storozhev D. A., Surzhikov S. T., “Numerical simulation of the two-dimensional structure of glow discharge in molecular nitrogen in light of vibrational kinetics”, High Temp., 53:3 (2015), 307–318 | DOI

[49] Storozhev D. A., “Chislennoe modelirovanie kinetiki ionizatsii i dissotsiatsii vodoroda v plazme razriada Penninga v priblizhenii LTR”, Fiziko-khimicheskaia kinetika v gazovoi dinamike, 15:3 (2014)

[50] Surzhikov S. T., Application of the Modified Drift-Diffusion Theory to Study of the TwoDimensional Structure of the Penning Discharge, AIAA paper, No 2015-1832, 2015

[51] Surzhikov S. T., “Two-dimensional structure of Penning discharge in cylindrical chamber with axial magnetic field at pressure of order of 1 torr”, JTP Letters, 43:3 (2017), 64–71