Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_9_a10, author = {O. F. Voropaeva and S. D. Senotrusova}, title = {The passage from delay equation to {ODE} system in the model of the tumor markers network}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {135--154}, publisher = {mathdoc}, volume = {29}, number = {9}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a10/} }
TY - JOUR AU - O. F. Voropaeva AU - S. D. Senotrusova TI - The passage from delay equation to ODE system in the model of the tumor markers network JO - Matematičeskoe modelirovanie PY - 2017 SP - 135 EP - 154 VL - 29 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a10/ LA - ru ID - MM_2017_29_9_a10 ER -
%0 Journal Article %A O. F. Voropaeva %A S. D. Senotrusova %T The passage from delay equation to ODE system in the model of the tumor markers network %J Matematičeskoe modelirovanie %D 2017 %P 135-154 %V 29 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a10/ %G ru %F MM_2017_29_9_a10
O. F. Voropaeva; S. D. Senotrusova. The passage from delay equation to ODE system in the model of the tumor markers network. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 135-154. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a10/
[1] Lane D., Levine A., “p53 research: The past thirty years and the next thirty years”, Cold Spring Harb. Perspect. Biol., 2010, no. 2, a000893
[2] Geva-Zatorsky N., Rosenfeld N., Itzkovitz Sh. et al., “Oscillations and variability in the p53 system”, Molecular Systems Biology, 2006, no. 2, 1–13
[3] Toettcher J. E., Mock C., Batchelor E., Loewer A., Lahav G., “A synthetic-natural hybrid oscillator in human cells”, PNAS, 107:39 (2010), 17047–17052 | DOI
[4] Loewer A., Batchelor E., Gaglia G., Lahav G., “Basal dynamics of p53 reveals transcriptionally attenuated pulses in cycling cells”, Cell, 142:1 (2010), 89–100 | DOI
[5] Batchelor E., Loewer A., Mock C., Lahav G., “Stimulus-dependent dynamics of p53 in single cells”, Molecular Systems Biology, 7:488 (2011), 8
[6] Schon O., Friedler A., Bycroft M., Freund S. M. V., Fersht A. R., “Molecular mechanism of the interaction between MDM2 and p53”, J. Mol. Biol., 323 (2002), 491 | DOI
[7] Jansson M. D., Lund A. H., “MicroRNA and cancer”, Molecular oncology, 6 (2012), 590–610 | DOI
[8] Hermeking H., “MicroRNAs in the p53 network: micromanagement of tumor suppression”, Nature reviews cancer, 12:9 (2012), 613–626 | DOI
[9] Kolesnikov N. N. i dr., “MikroRNK, evoliutsiia i rak”, Tsitologiia, 55:3 (2013), 159–164 | Zbl
[10] Mihalas G. I., Simon Z., Balea G., Popa E., “Possible oscillatory behavior in p53-Mdm2 interaction computer simulation”, J. Biol. Syst., 8:1 (2000), 21–29 | DOI
[11] Tiana G., Jensen M. H., Sneppen K., “Time delay as a key to apoptosis induction in the p53 network”, Eur. Phys. J. B, 29 (2002), 135–140 | DOI
[12] Ma L., Wagner J., Rice J., Hu W., Levine A. J., Stolovitzky G. A., “A plausible model for the digital response of p53 to DNA damage”, PNAS, 102:4 (2005), 14266–14271
[13] Horhat R. F., Neamtu M., Mircea G., “Mathematical models and numerical simulations for the P53-Mdm2 network”, Applied Sciences, 10 (2008), 94–106 | MR | Zbl
[14] Likhoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modelirovanie uravneniem s zapazdyvaiushchim argumentom mnogostadiinogo sinteza bez vetvleniia”, Sib. zhurn. industr. matem., 7:1 (2004), 73–94 | Zbl
[15] Melnik I. A., “Ob odnoi nelineinoi sisteme differentsialnykh uravnenii, modeliruiushchei mnogostadiinyi sintez veshchestva”, Vestnik TGU. Ser.: Estestvennye i tekhnicheskie nauki, 16:5 (2011), 1254–1259
[16] Likhoshvai V. A., Fadeev S. I., Shtokalo D. N., Ob issledovanii nelineinykh modelei mnogostadiinogo sinteza veshchestva, Preprint No 246, In-t matem. im. S.L. Soboleva, Novosibirsk, 2010, 37 pp.
[17] Demidenko G. V., “Systems of differential equations of higher dimension and delay equations”, Siberian Math. J., 53:6 (2012), 1021–1028 | DOI | MR | Zbl
[18] Fadeev S. I., Likhoshvai V. A., Shtokalo D. N., Korolev V. K., “Ob issledovanii matematicheskikh modelei matrichnogo sinteza nereguliarnykh polimerov DNK, RNK i belkov”, Sib. elektron. matem. izv., 7 (2010), 467–475 | Zbl
[19] Voropaeva O. F., Shokin Yu. I., Nepomnyashchikh L. M., Senchukova S. R., Matematicheskoe modelirovanie funktsionirovaniia i reguliatsii biologicheskoi sistemy p53-Mdm2, Izd-vo RAMN, M., 2014, 176 pp. | Zbl
[20] Voropaeva O. F., Shokin Y. I., “Chislennoe modelirovanie v meditsine: Nekotorye postanovki zadach i rezultaty raschetov”, Vychislitelnye tekhnologii, 17:4 (2012), 29–55
[21] Voropaeva O. F., Shokin Y. I., “Chislennoe modelirovanie obratnoi sviazi p53-Mdm2 v biologicheskom protsesse apoptoza”, Vychislitelnye tekhnologii, 17:6 (2012), 47–63
[22] Voropaeva O. F., Shokin Yu. I., Nepomnyashchikh L. M., Senchukova S. R., “Mathematical Modeling of Functioning of the p53-Mdm2 Protein System”, Bulletin of Experimental Biology and Medicine, 157:2 (2014), 261–264
[23] Voropaeva O. F., Shokin Yu. I., Nepomnyashchikh L. M., Senchukova S. R., “Mathematical Modeling of p53-Mdm2 Protein Biological System Regulation”, Bulletin of Experimental Biology and Medicine, 157:4 (2014), 535–538 | DOI
[24] Voropaeva O. F., Senchukova S. R., Brodt K. V., Garbuzov K. E., Melnitchenko A. V., Starikova A. A., “Numerical Simulation of Ultradian Oscillations in p53-Mdm2 Network under Stress Conditions”, Mathematical Models and Computer Simulations, 7:3 (2015), 281–293 | DOI | MR
[25] Voropaeva O. F., Kozlova A. O., Senotrusova S. D., “Chislennyi analiz perekhoda ot uravneniia s zapazdyvaniem k sisteme ODU v matematicheskoi modeli seti onkomarkerov”, Vychislitelnye tekhnologii, 21:2 (2016), 63–74
[26] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986