The passage from delay equation to ODE system in the model of the tumor markers network
Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 135-154.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to a numerical analysis of the solutions of systems of equations describing the dynamics of the concentration of p53 and Mdm2 proteins in their interaction. We consider two interrelated mathematical models of the p53-Mdm2 network. The first model of the proteins concentrations dynamics includes the system of two nonlinear equations with the retarded argument. The second model describes hypothetical stages of process and uses the simplest ODE of higher dimension. We show numerically that in the passage to the limit in which the second model has sufficiently many stages we obtain model based equation with retarded argument. A mathematical model of the network p53-Mdm2-miRNA was constructed. The numerical analysis of the passage to the limit in this mathematical model was carried out.
Keywords: numerical analysis, delay equation, tumor marker, Mdm2, microRNA
Mots-clés : p53, passage to limit.
@article{MM_2017_29_9_a10,
     author = {O. F. Voropaeva and S. D. Senotrusova},
     title = {The passage from delay equation to {ODE} system in the model of the tumor markers network},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {135--154},
     publisher = {mathdoc},
     volume = {29},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a10/}
}
TY  - JOUR
AU  - O. F. Voropaeva
AU  - S. D. Senotrusova
TI  - The passage from delay equation to ODE system in the model of the tumor markers network
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 135
EP  - 154
VL  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a10/
LA  - ru
ID  - MM_2017_29_9_a10
ER  - 
%0 Journal Article
%A O. F. Voropaeva
%A S. D. Senotrusova
%T The passage from delay equation to ODE system in the model of the tumor markers network
%J Matematičeskoe modelirovanie
%D 2017
%P 135-154
%V 29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a10/
%G ru
%F MM_2017_29_9_a10
O. F. Voropaeva; S. D. Senotrusova. The passage from delay equation to ODE system in the model of the tumor markers network. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 135-154. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a10/

[1] Lane D., Levine A., “p53 research: The past thirty years and the next thirty years”, Cold Spring Harb. Perspect. Biol., 2010, no. 2, a000893

[2] Geva-Zatorsky N., Rosenfeld N., Itzkovitz Sh. et al., “Oscillations and variability in the p53 system”, Molecular Systems Biology, 2006, no. 2, 1–13

[3] Toettcher J. E., Mock C., Batchelor E., Loewer A., Lahav G., “A synthetic-natural hybrid oscillator in human cells”, PNAS, 107:39 (2010), 17047–17052 | DOI

[4] Loewer A., Batchelor E., Gaglia G., Lahav G., “Basal dynamics of p53 reveals transcriptionally attenuated pulses in cycling cells”, Cell, 142:1 (2010), 89–100 | DOI

[5] Batchelor E., Loewer A., Mock C., Lahav G., “Stimulus-dependent dynamics of p53 in single cells”, Molecular Systems Biology, 7:488 (2011), 8

[6] Schon O., Friedler A., Bycroft M., Freund S. M. V., Fersht A. R., “Molecular mechanism of the interaction between MDM2 and p53”, J. Mol. Biol., 323 (2002), 491 | DOI

[7] Jansson M. D., Lund A. H., “MicroRNA and cancer”, Molecular oncology, 6 (2012), 590–610 | DOI

[8] Hermeking H., “MicroRNAs in the p53 network: micromanagement of tumor suppression”, Nature reviews cancer, 12:9 (2012), 613–626 | DOI

[9] Kolesnikov N. N. i dr., “MikroRNK, evoliutsiia i rak”, Tsitologiia, 55:3 (2013), 159–164 | Zbl

[10] Mihalas G. I., Simon Z., Balea G., Popa E., “Possible oscillatory behavior in p53-Mdm2 interaction computer simulation”, J. Biol. Syst., 8:1 (2000), 21–29 | DOI

[11] Tiana G., Jensen M. H., Sneppen K., “Time delay as a key to apoptosis induction in the p53 network”, Eur. Phys. J. B, 29 (2002), 135–140 | DOI

[12] Ma L., Wagner J., Rice J., Hu W., Levine A. J., Stolovitzky G. A., “A plausible model for the digital response of p53 to DNA damage”, PNAS, 102:4 (2005), 14266–14271

[13] Horhat R. F., Neamtu M., Mircea G., “Mathematical models and numerical simulations for the P53-Mdm2 network”, Applied Sciences, 10 (2008), 94–106 | MR | Zbl

[14] Likhoshvai V. A., Fadeev S. I., Demidenko G. V., Matushkin Yu. G., “Modelirovanie uravneniem s zapazdyvaiushchim argumentom mnogostadiinogo sinteza bez vetvleniia”, Sib. zhurn. industr. matem., 7:1 (2004), 73–94 | Zbl

[15] Melnik I. A., “Ob odnoi nelineinoi sisteme differentsialnykh uravnenii, modeliruiushchei mnogostadiinyi sintez veshchestva”, Vestnik TGU. Ser.: Estestvennye i tekhnicheskie nauki, 16:5 (2011), 1254–1259

[16] Likhoshvai V. A., Fadeev S. I., Shtokalo D. N., Ob issledovanii nelineinykh modelei mnogostadiinogo sinteza veshchestva, Preprint No 246, In-t matem. im. S.L. Soboleva, Novosibirsk, 2010, 37 pp.

[17] Demidenko G. V., “Systems of differential equations of higher dimension and delay equations”, Siberian Math. J., 53:6 (2012), 1021–1028 | DOI | MR | Zbl

[18] Fadeev S. I., Likhoshvai V. A., Shtokalo D. N., Korolev V. K., “Ob issledovanii matematicheskikh modelei matrichnogo sinteza nereguliarnykh polimerov DNK, RNK i belkov”, Sib. elektron. matem. izv., 7 (2010), 467–475 | Zbl

[19] Voropaeva O. F., Shokin Yu. I., Nepomnyashchikh L. M., Senchukova S. R., Matematicheskoe modelirovanie funktsionirovaniia i reguliatsii biologicheskoi sistemy p53-Mdm2, Izd-vo RAMN, M., 2014, 176 pp. | Zbl

[20] Voropaeva O. F., Shokin Y. I., “Chislennoe modelirovanie v meditsine: Nekotorye postanovki zadach i rezultaty raschetov”, Vychislitelnye tekhnologii, 17:4 (2012), 29–55

[21] Voropaeva O. F., Shokin Y. I., “Chislennoe modelirovanie obratnoi sviazi p53-Mdm2 v biologicheskom protsesse apoptoza”, Vychislitelnye tekhnologii, 17:6 (2012), 47–63

[22] Voropaeva O. F., Shokin Yu. I., Nepomnyashchikh L. M., Senchukova S. R., “Mathematical Modeling of Functioning of the p53-Mdm2 Protein System”, Bulletin of Experimental Biology and Medicine, 157:2 (2014), 261–264

[23] Voropaeva O. F., Shokin Yu. I., Nepomnyashchikh L. M., Senchukova S. R., “Mathematical Modeling of p53-Mdm2 Protein Biological System Regulation”, Bulletin of Experimental Biology and Medicine, 157:4 (2014), 535–538 | DOI

[24] Voropaeva O. F., Senchukova S. R., Brodt K. V., Garbuzov K. E., Melnitchenko A. V., Starikova A. A., “Numerical Simulation of Ultradian Oscillations in p53-Mdm2 Network under Stress Conditions”, Mathematical Models and Computer Simulations, 7:3 (2015), 281–293 | DOI | MR

[25] Voropaeva O. F., Kozlova A. O., Senotrusova S. D., “Chislennyi analiz perekhoda ot uravneniia s zapazdyvaniem k sisteme ODU v matematicheskoi modeli seti onkomarkerov”, Vychislitelnye tekhnologii, 21:2 (2016), 63–74

[26] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986