Numerical modeling of laser target compression in an external magnetic field
Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The simplified one-dimensional mathematical model of the processes of compression of thermonuclear targets for MIF centrally symmetric coordinate system is presented. A method for high order that is used in the calculation of the basic physical processes occurring in the target plasma by applying an external magnetic field is considered.
Mots-clés : magneto-inertial confinement fusion
Keywords: laser driver, inhomogeneous electric and magnetic fields, magnetized plasma, development of numerical methods.
@article{MM_2017_29_9_a1,
     author = {V. V. Kuzenov and S. V. Ryzhkov},
     title = {Numerical modeling of laser target compression in an external magnetic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {29},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a1/}
}
TY  - JOUR
AU  - V. V. Kuzenov
AU  - S. V. Ryzhkov
TI  - Numerical modeling of laser target compression in an external magnetic field
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 19
EP  - 32
VL  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a1/
LA  - ru
ID  - MM_2017_29_9_a1
ER  - 
%0 Journal Article
%A V. V. Kuzenov
%A S. V. Ryzhkov
%T Numerical modeling of laser target compression in an external magnetic field
%J Matematičeskoe modelirovanie
%D 2017
%P 19-32
%V 29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a1/
%G ru
%F MM_2017_29_9_a1
V. V. Kuzenov; S. V. Ryzhkov. Numerical modeling of laser target compression in an external magnetic field. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 19-32. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a1/

[1] O.G. Olkhovskaya, V.A. Gasilov, M.M. Basko et al., “Calculation of output power and X-ray spectrum of Z-pinches based on multiwire arrays”, Mathematical Models and Computer Simulations, 8:4 (2016), 422–437 | DOI

[2] S.V. Ryzhkov, “Current status, problems and prospects of thermonuclear facilities based on the magneto-inertial confinement of hot plasma”, Bulletin of the Russian Academy of Sciences. Physics, 78 (2014), 456–461 | DOI | DOI

[3] V.V. Kuzenov, S.V. Ryzhkov, P.A. Frolko, “Skhemy standartnogo i kombinirovannogo vozdeistviia v kontseptsii magnitno-inertsialnogo termoiadernogo sinteza”, Prikladnaia fizika, 2015, no. 2, 21–27

[4] B.N. Kozlov, “Skorosti termoiadernykh reaktsii”, Atomnaia energiia, 12:3 (1962), 238 | Zbl

[5] B.N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 303 pp.

[6] A.A. Samarskii, Iu.P. Popov, Raznostnye metody resheniia zadach gazovoi dinamiki, Editorial URSS, M., 2009, 424 pp.

[7] V.F. Diachenko, V.S. Imshennik, “K magnitnogidrodinamicheskoi teorii pinch-effekta v vysokotemperaturnoi plotnoi plazme”, Voprosy teorii plazmy, 5, Atomizdat, M., 1967, 394–438

[8] S.I. Braginskii, “Iavleniia perenosa v plazme”, Voprosy teorii plazmy, 1, Atomizdat, M., 1963, 183–272

[9] Ya.B. Zeldovich, Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Academic Press Inc., New York, 1967, 944 pp.

[10] S.T. Surzhikov, “Computing system for solving radiative gasdynamic problems of entry and re-entry space vehicles”, Proceedings of the 1st International Workshop on Radiation of High Temperature Gases in Atmospheric Entry, 2003, ESA-533, 111–118

[11] S.T. Surzhikov, Computational physics of electric discharges in gas flows, Walter de Gruyter GmbH, 2013, 427 pp. | MR

[12] V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev, “Opredelenie termodinamicheskikh svoistv zamagnichennoi plazmy na osnove modeli Tomasa–Fermi”, Prikladnaia fizika, 2014, no. 3, 22–25

[13] V.V. Kuzenov, S.V. Ryzhkov, V.V. Shumaev, “Application of Thomas-Fermi model to evaluation of thermodynamic properties of magnetized plasma”, Problems of Atomic Science and Technology, 2015, no. 1(95), 97–99

[14] V.V. Kuzenov, A.I. Lebo, I.G. Lebo, S.V. Ryzhkov, Fiziko-matematicheskie modeli i metody rascheta vozdeistviia moshchnykh lazernykh i plazmennykh impulsov na kondensirovannye i gazovye sredy, MGTU im. N.E. Baumana, M., 2015, 328 pp.

[15] V.V. Kuzenov, S.V. Ryzhkov, “Numerical modeling of magnetized plasma compressed by the laser beams and plasma jets”, Problems of Atomic Science and Technology, 2013, no. 1(83), 12–14

[16] V.M. Kovenia, N.N. Ianenko, Metod rasshchepleniia v zadachakh gazovoi dinamiki, Nauka, M., 1981, 304 pp.

[17] K.N. Volkov, V.N. Emelianov, Modelirovanie krupnykh vikhrei v raschetakh turbulentnykh techenii, Fizmatlit, M., 2008, 364 pp.

[18] T.J. Barth, On unstructured grids and solvers, Computational Fluid Dynamics, Lecture Series 1990-03, Von Karman Institute for Fluid Dynamics, 1990, 65 pp.

[19] A.D. Savel'ev, “High-order composite compact schemes for simulation of viscous gas flows”, Computational Mathematics and Mathematical Physics, 47:8 (2007), 1332–1346 | DOI | MR

[20] L.E. Dovgilovich, I.L. Sofronov, “O primenenii kompaktnykh skhem dlia resheniia volnovogo uravneniia”, Preprinty IPM im. M.V. Keldysha RAN, 2008, 084, 27 pp.

[21] O. Bokanowski, S. Martin, R. Munos, H. Zidani, “An anti-diffusive scheme for viability problems”, Applied Numerical Mathematics, 56 (2006), 1147–1162 | DOI | MR | Zbl

[22] V.I. Pinchukov, “Modelirovanie nestatsionarnykh techenii na bolshikh vremenakh isi spolzovaniem neiavnykh skhem vysokikh poriadkov”, Matematicheskoe modelirovanie, 16:8 (2004), 59–69 | Zbl

[23] M. Abramowitz, I. Stegun, Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, 1972, 1045 pp. | MR | Zbl

[24] M.A. Lavrent'ev, B.V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 688 pp.

[25] E.V. Vorozhtsov, “Primenenie razlozhenii Lagranzha-Biurmana dlia chislennogo integrirovaniia uravnenii neviazkogo gaza”, Vychislitelnye metody i programmirovanie, 12:3 (2011), 348–361

[26] A.I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 232 pp.; A.I. Tolstykh, “Hybrid schemes with high-order multioperators for computing discontinuous solutions”, Computational Mathematics and Mathematical Physics, 53 (2013), 1303–1322 | DOI | MR | Zbl

[27] V.V. Kuzenov, “Testirovanie otdelnykh elementov metoda rascheta fizicheskikh protsessov v misheni magnitno-inertsialnogo termoiadernogo sinteza”, Prikladnaia fizika, 2016, no. 2, 16–24

[28] N.Y. Fabrikant, Aerodynamika. Obshchii kurs, Nauka, M., 1964, 815 pp.