On a stability of discontinuous particle method for transfer equation
Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 3-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear transfer of mass, momentum and energy is the main pecularity of gas dynamics. A «discontinuous» particle method is proposed for its efficient numerical modeling. The method is discribed in details in application to linear and nonlinear transfer processes. Necessary and sufficient monotonicity and stability condition of discontinuous particle method for regularized Hopf equation is obtained. At a simplest example of discontinuous solution, the method advantages, which include a discontinuty widening over only one particle, self adaptation of space resolution to solution pecularities, are shown.
Keywords: particle method, gas dynamics problems, micro- macromodels, Hopf equation.
Mots-clés : transfer equations, Courant condition
@article{MM_2017_29_9_a0,
     author = {A. Zh. Baev and S. V. Bogomolov},
     title = {On a stability of discontinuous particle method for transfer equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {29},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/}
}
TY  - JOUR
AU  - A. Zh. Baev
AU  - S. V. Bogomolov
TI  - On a stability of discontinuous particle method for transfer equation
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 3
EP  - 18
VL  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/
LA  - ru
ID  - MM_2017_29_9_a0
ER  - 
%0 Journal Article
%A A. Zh. Baev
%A S. V. Bogomolov
%T On a stability of discontinuous particle method for transfer equation
%J Matematičeskoe modelirovanie
%D 2017
%P 3-18
%V 29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/
%G ru
%F MM_2017_29_9_a0
A. Zh. Baev; S. V. Bogomolov. On a stability of discontinuous particle method for transfer equation. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/

[1] F.H. Harlow, “The Particle-in-Cell Method for Numerical Solution of Problems in Fluid Dynamics”, Proc. Symp. Applied Mathematics, 1963, 15 pp.

[2] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, McGraw-Hill, 1981

[3] Iu.A. Berezin, V.A. Vshivkov, Metod chastits v dinamike razrezhennoy plazmy, Nauka, Novosibirsk, 1980, 96 pp.

[4] Iu.S. Sigov, Vychislitelnyy eksperiment: most mezhdu proshlym i budushchim fiziki plazmy, Fizmatlit, M., 2001

[5] A.A. Arsen'ev, “On the approximation of the solution of the Boltzmann equation by solutions of the Ito stochastic differential equations”, USSR Computational Mathematics and Mathematical Physics, 27:2 (1987), 51–59 | DOI | Zbl

[6] M.F. Ivanov, V.A. Galburt, “Stokhasticheskii podkhod k chislennomu resheniiu uravneniia Fokkera–Planka”, Matematicheskoe modelirovanie, 20:11 (2008), 3–27

[7] S.V. Bogomolov, I.G. Gudich, “Verification of a stochastic diffusion gas model”, Mathematical Models and Computer Simulations, 6:3 (2014), 305–316 | DOI | MR

[8] M.H. Gorji, P. Jenny, “Fokker–Planck-DSMC Algorithm for simulations of rarefied gas flows”, Journal of Computational Physics, 287 (2015), 110–129 | DOI | MR | Zbl

[9] S.S. Artem'ev, M.A. Yakunin, “Analysis of estimation accuracy of the first moments of a Monte Carlo solution to an SDE with Wiener and Poisson components”, Numerical Analysis and Applications, 9:1 (2016), 24–33 | DOI | MR | Zbl

[10] S.V. Bogomolov, “An entropy consistent particle method for Navier–Stokes equations”, ECCOMAS Congress 2004 IV European Congress on Computational Methods in Applied Sciences and Engineering (2004, Jyvaskyla, Finland)

[11] S.V. Bogomolov, A.A. Zamaraeva, H. Carabelli, K.V. Kuznetsov, “A conservative particle method for a quasilinear transport equation”, Computational Mathematics and Mathematical Physics, 38:9 (1998), 1536–1541 | MR | Zbl

[12] R.A. Gingold, J.J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, Mon. Not. R. Astron. Soc., 181 (1977), 375–389 | DOI | Zbl

[13] N.M. Evstigneev, O.I. Ryabkov, F.S. Zaitsev, “High-performance parallel algorithms based on smoothed particles hydrodynamics for solving continuum mechanics problems”, Doklady Mathematics, 90:3 (2014), 773–777 | DOI | DOI | MR | Zbl

[14] H. Haoyue, P. Eberhard, F. Fetzer, P. Berger, “Towards multiphysics simulation of deep penetration laser welding using smoothed particle hydrodynamics”, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering (june 2016)

[15] E. Onate, S.R. Idelsohn, F. Del Pin, R. Aubry, “The particle finite element method”, Overv. Int. J. Comp. Methods, 2004, 267–307 | DOI | MR | Zbl

[16] E. Oñate, J. Miquel, P. Nadukandi, “An accurate FIC-FEM formulation for the 1D advection-diffusion-reaction equation”, Comp. Methods Appl. Mech. Eng., 298 (2016), 373–406 | DOI | MR

[17] Computational Particle Mechanics http://link.springer.com/journal/40571

[18] N.N. Kalitkin, P.V. Koryakin, Chislennye metody, v. 2, Izdatelskiy tsentr “Akademiya”, M., 2013

[19] O.A. Oleinik, “Discontinuous solutions of non-linear differential equations”, Uspekhi Mat. Nauk, 12:3 (1957), 3–73 | MR | Zbl

[20] A.N. Tikhonov, A.A. Samarsky, “O razryvnykh resheniyakh kvazilineynogo uravneniya pervogo poryadka”, DAN SSSR, 99:1 (1954), 27–30 | Zbl

[21] S.N. Kruzhkov, “Generalized solutions of nonlinear first order equations with several independent variables”, Matematicheskii sbornik, 72(114):1 (1967), 108–134 | MR | Zbl | Zbl