On a stability of discontinuous particle method for transfer equation
Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 3-18

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonlinear transfer of mass, momentum and energy is the main pecularity of gas dynamics. A «discontinuous» particle method is proposed for its efficient numerical modeling. The method is discribed in details in application to linear and nonlinear transfer processes. Necessary and sufficient monotonicity and stability condition of discontinuous particle method for regularized Hopf equation is obtained. At a simplest example of discontinuous solution, the method advantages, which include a discontinuty widening over only one particle, self adaptation of space resolution to solution pecularities, are shown.
Keywords: particle method, gas dynamics problems, micro- macromodels, Hopf equation.
Mots-clés : transfer equations, Courant condition
@article{MM_2017_29_9_a0,
     author = {A. Zh. Baev and S. V. Bogomolov},
     title = {On a stability of discontinuous particle method for transfer equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--18},
     publisher = {mathdoc},
     volume = {29},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/}
}
TY  - JOUR
AU  - A. Zh. Baev
AU  - S. V. Bogomolov
TI  - On a stability of discontinuous particle method for transfer equation
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 3
EP  - 18
VL  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/
LA  - ru
ID  - MM_2017_29_9_a0
ER  - 
%0 Journal Article
%A A. Zh. Baev
%A S. V. Bogomolov
%T On a stability of discontinuous particle method for transfer equation
%J Matematičeskoe modelirovanie
%D 2017
%P 3-18
%V 29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/
%G ru
%F MM_2017_29_9_a0
A. Zh. Baev; S. V. Bogomolov. On a stability of discontinuous particle method for transfer equation. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/