Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_9_a0, author = {A. Zh. Baev and S. V. Bogomolov}, title = {On a stability of discontinuous particle method for transfer equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--18}, publisher = {mathdoc}, volume = {29}, number = {9}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/} }
A. Zh. Baev; S. V. Bogomolov. On a stability of discontinuous particle method for transfer equation. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a0/
[1] F.H. Harlow, “The Particle-in-Cell Method for Numerical Solution of Problems in Fluid Dynamics”, Proc. Symp. Applied Mathematics, 1963, 15 pp.
[2] R.W. Hockney, J.W. Eastwood, Computer simulation using particles, McGraw-Hill, 1981
[3] Iu.A. Berezin, V.A. Vshivkov, Metod chastits v dinamike razrezhennoy plazmy, Nauka, Novosibirsk, 1980, 96 pp.
[4] Iu.S. Sigov, Vychislitelnyy eksperiment: most mezhdu proshlym i budushchim fiziki plazmy, Fizmatlit, M., 2001
[5] A.A. Arsen'ev, “On the approximation of the solution of the Boltzmann equation by solutions of the Ito stochastic differential equations”, USSR Computational Mathematics and Mathematical Physics, 27:2 (1987), 51–59 | DOI | Zbl
[6] M.F. Ivanov, V.A. Galburt, “Stokhasticheskii podkhod k chislennomu resheniiu uravneniia Fokkera–Planka”, Matematicheskoe modelirovanie, 20:11 (2008), 3–27
[7] S.V. Bogomolov, I.G. Gudich, “Verification of a stochastic diffusion gas model”, Mathematical Models and Computer Simulations, 6:3 (2014), 305–316 | DOI | MR
[8] M.H. Gorji, P. Jenny, “Fokker–Planck-DSMC Algorithm for simulations of rarefied gas flows”, Journal of Computational Physics, 287 (2015), 110–129 | DOI | MR | Zbl
[9] S.S. Artem'ev, M.A. Yakunin, “Analysis of estimation accuracy of the first moments of a Monte Carlo solution to an SDE with Wiener and Poisson components”, Numerical Analysis and Applications, 9:1 (2016), 24–33 | DOI | MR | Zbl
[10] S.V. Bogomolov, “An entropy consistent particle method for Navier–Stokes equations”, ECCOMAS Congress 2004 IV European Congress on Computational Methods in Applied Sciences and Engineering (2004, Jyvaskyla, Finland)
[11] S.V. Bogomolov, A.A. Zamaraeva, H. Carabelli, K.V. Kuznetsov, “A conservative particle method for a quasilinear transport equation”, Computational Mathematics and Mathematical Physics, 38:9 (1998), 1536–1541 | MR | Zbl
[12] R.A. Gingold, J.J. Monaghan, “Smoothed particle hydrodynamics: theory and application to non-spherical stars”, Mon. Not. R. Astron. Soc., 181 (1977), 375–389 | DOI | Zbl
[13] N.M. Evstigneev, O.I. Ryabkov, F.S. Zaitsev, “High-performance parallel algorithms based on smoothed particles hydrodynamics for solving continuum mechanics problems”, Doklady Mathematics, 90:3 (2014), 773–777 | DOI | DOI | MR | Zbl
[14] H. Haoyue, P. Eberhard, F. Fetzer, P. Berger, “Towards multiphysics simulation of deep penetration laser welding using smoothed particle hydrodynamics”, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering (june 2016)
[15] E. Onate, S.R. Idelsohn, F. Del Pin, R. Aubry, “The particle finite element method”, Overv. Int. J. Comp. Methods, 2004, 267–307 | DOI | MR | Zbl
[16] E. Oñate, J. Miquel, P. Nadukandi, “An accurate FIC-FEM formulation for the 1D advection-diffusion-reaction equation”, Comp. Methods Appl. Mech. Eng., 298 (2016), 373–406 | DOI | MR
[17] Computational Particle Mechanics http://link.springer.com/journal/40571
[18] N.N. Kalitkin, P.V. Koryakin, Chislennye metody, v. 2, Izdatelskiy tsentr “Akademiya”, M., 2013
[19] O.A. Oleinik, “Discontinuous solutions of non-linear differential equations”, Uspekhi Mat. Nauk, 12:3 (1957), 3–73 | MR | Zbl
[20] A.N. Tikhonov, A.A. Samarsky, “O razryvnykh resheniyakh kvazilineynogo uravneniya pervogo poryadka”, DAN SSSR, 99:1 (1954), 27–30 | Zbl
[21] S.N. Kruzhkov, “Generalized solutions of nonlinear first order equations with several independent variables”, Matematicheskii sbornik, 72(114):1 (1967), 108–134 | MR | Zbl | Zbl