Molecular dynamics simulations of surface nanobubble’s evolution in a liquid flow
Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 131-140.

Voir la notice de l'article provenant de la source Math-Net.Ru

This study represents the molecular dynamics simulations of surface nanobubble in a liquid flow. The system consisting of molecules, interacting via Lennard–Jones potential is considered. The simulations of the liquid flow between two plates is realized. The surface nanobubble’s dynamics during the movement along the plate is demonstrated. The dependence of the advancing/receding contact angle on the Lennard–Jones parameters is studied.
Keywords: molecular dynamics, nanobubbles, contact angle, mathematical modeling.
@article{MM_2017_29_8_a9,
     author = {E. F. Moiseeva and V. L. Malyshev and D. F. Marin and N. A. Gumerov and I. Sh. Akhatov},
     title = {Molecular dynamics simulations of surface nanobubble{\textquoteright}s evolution in a liquid flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {131--140},
     publisher = {mathdoc},
     volume = {29},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a9/}
}
TY  - JOUR
AU  - E. F. Moiseeva
AU  - V. L. Malyshev
AU  - D. F. Marin
AU  - N. A. Gumerov
AU  - I. Sh. Akhatov
TI  - Molecular dynamics simulations of surface nanobubble’s evolution in a liquid flow
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 131
EP  - 140
VL  - 29
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_8_a9/
LA  - ru
ID  - MM_2017_29_8_a9
ER  - 
%0 Journal Article
%A E. F. Moiseeva
%A V. L. Malyshev
%A D. F. Marin
%A N. A. Gumerov
%A I. Sh. Akhatov
%T Molecular dynamics simulations of surface nanobubble’s evolution in a liquid flow
%J Matematičeskoe modelirovanie
%D 2017
%P 131-140
%V 29
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_8_a9/
%G ru
%F MM_2017_29_8_a9
E. F. Moiseeva; V. L. Malyshev; D. F. Marin; N. A. Gumerov; I. Sh. Akhatov. Molecular dynamics simulations of surface nanobubble’s evolution in a liquid flow. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 131-140. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a9/

[1] N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, “Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy”, Langmuir, 16 (2000), 6377–6380 | DOI

[2] S.-T. Lou, Z.-Q. Ouyang, Y. Zhang, X.-J. Li, J. Hu, M.-Q. Li, F.-J. Yang, “Nanobubbles on solid surface imaged by atomic force microscopy”, Journal of Vacuum Science and Technology B, 18 (2000), 2573–2575 | DOI

[3] M.A. Hampton, B.C. Donose, A.V. Nguyen, “Effect of alcohol-water exchange and surface scanning on nanobubbles and the attraction between hydrophobic surface”, J. Colloid Interface Sci., 325 (2008), 267–274 | DOI

[4] M.A. Hampton, A.V. Nguyen, “Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive”, J. Colloid Interface Sci., 333 (2009), 800–806 | DOI

[5] J. Yang, J. Duan, D. Fornasiero, J. Ralston, “Very Small Bubble Formation at the Solid-Water Interface”, J. Phys. Chem., 107 (2003), 6139–6147 | DOI

[6] S. Yang, S.M. Dammer, N. Bremond, H.J.W. Zandvliet, E.S. Kooij, D. Lohse, “Characterization of Nanobubbles on Hydrophobic Surfaces in Water”, Langmuir, 23 (2007), 7072–7077 | DOI

[7] X.-H. Zhang, N. Maeda, V.S. Craig, “Properties of Nanobubbles on Hydrophobic Surfaces in Water and Aqueous Solutions”, Langmuir, 22 (2006), 5025 | DOI

[8] X.-H. Zhang, X. Zhang, J. Sun, Z. Zhang, G. Li, H. Fang, X. Xiao, X. Zeng, J. Hu, “Detection of Novel Gaseous States at the Highly Oriented Pyrolytic Graphite-Water Interface”, Langmuir, 23 (2007), 1778–1783 | DOI

[9] X.-H. Zhang, X.D. Zhang, S.T. Lou, Z.X. Zhang, J.L. Sun, J. Hu, “Degassing and Temperature Effects on the Formation of Nanobubbles at the Mica/Water Interface”, Langmuir, 20 (2004), 3813–3815 | DOI

[10] J.H. Weijs, J.H. Snoeijer, D. Lohse, “Formation of surface nanobubbles and the universality of their contact angles: A molecular dynamics approach”, Physical Review Letters, 108 (2012), 104501 | DOI

[11] A.M. Igoshkin, I.F. Golovnev, V.M. Fomin, “Moleculiarno-dinamicheskoe issledovanie vliianiia temperaturi podlozhki na termomekhanicheskie kharakteristiki formiruemikh iz gazovoi fazi nanoplenok”, Fizicheskaia mezomekhanika, 16:1 (2013), 59–65 | Zbl

[12] P. Grosfils, “Coarse-grained modelling of surface nanobubbles”, Journal of Physics: Condensed Matter, 25:18 (2013), 184006 | DOI

[13] V.L. Malyshev, D.F. Marin, E.F. Moiseeva, N.A. Gumerov, I.S. Akhatov, “Study of the tensile strength of a liquid by molecular dynamics methods”, High Temperature, 53:3 (2015), 406–412 | DOI

[14] V.L. Malyshev, D.F. Marin, E.F. Moiseeva, N.A. Gumerov, I.S. Akhatov, “Vliianie gaza na prochnost zhidkosti na razriv. Modelirovanie metodami molekuliarnoi dinamiki”, TVT, 54:4 (2016), 16–19 | Zbl

[15] J. Koplik, J.R. Banavar, J. F., “Willemsen Molecular dynamics of fluid flow at solid surfaces”, Phys. Fluids A, 1 (1989), 781–794 | DOI

[16] K.P. Travis, K.E. Gubbins, “Poiseuille flow of Lennard-Jones fluids in narrow slit pores”, J. Chem. Phys., 112 (2000), 1984–1994 | DOI

[17] V. Rudiak, A.A. Belkin, V. Egorov, D.A. Ivanov, “Modelirovanie techenii v nanokanalah metodom molekuliarnoi dinamiki”, Nanosistemy: Fizika, Himiia, Matematika, 2 (2011), 100–112

[18] S.D. Hong, M.Y. Ha, S. Balachandar, “Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation”, J. Colloid Interface Sci., 339 (2009), 187–195 | DOI

[19] T. Koishi, K. Yasuoka, S. Fujikawa, X. C. Zeng, “Measurement of Contact-Angle Hysteresis for Droplets on Nanopillared Surface and in the Cassie and Wenzel States: A Molecular Dynamics Simulation Study”, ACS Nano, 5 (2011), 6834–6842 | DOI

[20] F.C. Wang, Y.P. Zhao, “Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study”, Colloid and Polymer Science, 291 (2013), 307–315 | DOI

[21] D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge Univer. Press, 2004, 565 pp. | Zbl

[22] V.L. Malyshev, D.F. Marin, E.F. Moiseeva, N.A. Gumerov, I.Sh. Akhatov, “Uskorenie molekuliarno-dinamicheskogo modelirovaniia nepoliarnyh molekul pri pomoshchi GPU”, Vestnik NNGU, 2014, no. 3, 126–133

[23] E.F. Moiseeva, D.F. Marin, V.L. Malyshev, N.A. Gumerov, I.Sh. Akhatov, “Issledovanie kontaktnogo ugla i obiema poverkhnostnogo nanopuzyrka metodami molekuliarnoy dinamiki”, Matematicheskoe modelirovanie, 27:4 (2015), 115–126 | Zbl

[24] H. Weijs, A. Marchand, A. Bruno, D. Lohse, “Origin of line tension for a Lennard–Jones nanodroplet”, Physics of Fluid, 23 (2011), 022001 | DOI

[25] V.I. Morariu, B.V. Srinivasan, V.C. Raykar, R. Duraiswami, L. S. Davis, “Automatic online tuning for fast Gaussian summation”, Advances in Neural Information Processing Systems (NIPS), 2008 (data obrascheniya: 22.11.2016) http://papers.nips.cc/paper/3420-automatic-online-tuning-for-fast-gaussian-summation

[26] F.C. Wang, Y.P. Zhao, “Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study”, Colloid and Polymer Science, 291 (2013), 307–315 | DOI