Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_8_a9, author = {E. F. Moiseeva and V. L. Malyshev and D. F. Marin and N. A. Gumerov and I. Sh. Akhatov}, title = {Molecular dynamics simulations of surface nanobubble{\textquoteright}s evolution in a liquid flow}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {131--140}, publisher = {mathdoc}, volume = {29}, number = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a9/} }
TY - JOUR AU - E. F. Moiseeva AU - V. L. Malyshev AU - D. F. Marin AU - N. A. Gumerov AU - I. Sh. Akhatov TI - Molecular dynamics simulations of surface nanobubble’s evolution in a liquid flow JO - Matematičeskoe modelirovanie PY - 2017 SP - 131 EP - 140 VL - 29 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_8_a9/ LA - ru ID - MM_2017_29_8_a9 ER -
%0 Journal Article %A E. F. Moiseeva %A V. L. Malyshev %A D. F. Marin %A N. A. Gumerov %A I. Sh. Akhatov %T Molecular dynamics simulations of surface nanobubble’s evolution in a liquid flow %J Matematičeskoe modelirovanie %D 2017 %P 131-140 %V 29 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_8_a9/ %G ru %F MM_2017_29_8_a9
E. F. Moiseeva; V. L. Malyshev; D. F. Marin; N. A. Gumerov; I. Sh. Akhatov. Molecular dynamics simulations of surface nanobubble’s evolution in a liquid flow. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 131-140. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a9/
[1] N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, “Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy”, Langmuir, 16 (2000), 6377–6380 | DOI
[2] S.-T. Lou, Z.-Q. Ouyang, Y. Zhang, X.-J. Li, J. Hu, M.-Q. Li, F.-J. Yang, “Nanobubbles on solid surface imaged by atomic force microscopy”, Journal of Vacuum Science and Technology B, 18 (2000), 2573–2575 | DOI
[3] M.A. Hampton, B.C. Donose, A.V. Nguyen, “Effect of alcohol-water exchange and surface scanning on nanobubbles and the attraction between hydrophobic surface”, J. Colloid Interface Sci., 325 (2008), 267–274 | DOI
[4] M.A. Hampton, A.V. Nguyen, “Systematically altering the hydrophobic nanobubble bridging capillary force from attractive to repulsive”, J. Colloid Interface Sci., 333 (2009), 800–806 | DOI
[5] J. Yang, J. Duan, D. Fornasiero, J. Ralston, “Very Small Bubble Formation at the Solid-Water Interface”, J. Phys. Chem., 107 (2003), 6139–6147 | DOI
[6] S. Yang, S.M. Dammer, N. Bremond, H.J.W. Zandvliet, E.S. Kooij, D. Lohse, “Characterization of Nanobubbles on Hydrophobic Surfaces in Water”, Langmuir, 23 (2007), 7072–7077 | DOI
[7] X.-H. Zhang, N. Maeda, V.S. Craig, “Properties of Nanobubbles on Hydrophobic Surfaces in Water and Aqueous Solutions”, Langmuir, 22 (2006), 5025 | DOI
[8] X.-H. Zhang, X. Zhang, J. Sun, Z. Zhang, G. Li, H. Fang, X. Xiao, X. Zeng, J. Hu, “Detection of Novel Gaseous States at the Highly Oriented Pyrolytic Graphite-Water Interface”, Langmuir, 23 (2007), 1778–1783 | DOI
[9] X.-H. Zhang, X.D. Zhang, S.T. Lou, Z.X. Zhang, J.L. Sun, J. Hu, “Degassing and Temperature Effects on the Formation of Nanobubbles at the Mica/Water Interface”, Langmuir, 20 (2004), 3813–3815 | DOI
[10] J.H. Weijs, J.H. Snoeijer, D. Lohse, “Formation of surface nanobubbles and the universality of their contact angles: A molecular dynamics approach”, Physical Review Letters, 108 (2012), 104501 | DOI
[11] A.M. Igoshkin, I.F. Golovnev, V.M. Fomin, “Moleculiarno-dinamicheskoe issledovanie vliianiia temperaturi podlozhki na termomekhanicheskie kharakteristiki formiruemikh iz gazovoi fazi nanoplenok”, Fizicheskaia mezomekhanika, 16:1 (2013), 59–65 | Zbl
[12] P. Grosfils, “Coarse-grained modelling of surface nanobubbles”, Journal of Physics: Condensed Matter, 25:18 (2013), 184006 | DOI
[13] V.L. Malyshev, D.F. Marin, E.F. Moiseeva, N.A. Gumerov, I.S. Akhatov, “Study of the tensile strength of a liquid by molecular dynamics methods”, High Temperature, 53:3 (2015), 406–412 | DOI
[14] V.L. Malyshev, D.F. Marin, E.F. Moiseeva, N.A. Gumerov, I.S. Akhatov, “Vliianie gaza na prochnost zhidkosti na razriv. Modelirovanie metodami molekuliarnoi dinamiki”, TVT, 54:4 (2016), 16–19 | Zbl
[15] J. Koplik, J.R. Banavar, J. F., “Willemsen Molecular dynamics of fluid flow at solid surfaces”, Phys. Fluids A, 1 (1989), 781–794 | DOI
[16] K.P. Travis, K.E. Gubbins, “Poiseuille flow of Lennard-Jones fluids in narrow slit pores”, J. Chem. Phys., 112 (2000), 1984–1994 | DOI
[17] V. Rudiak, A.A. Belkin, V. Egorov, D.A. Ivanov, “Modelirovanie techenii v nanokanalah metodom molekuliarnoi dinamiki”, Nanosistemy: Fizika, Himiia, Matematika, 2 (2011), 100–112
[18] S.D. Hong, M.Y. Ha, S. Balachandar, “Static and dynamic contact angles of water droplet on a solid surface using molecular dynamics simulation”, J. Colloid Interface Sci., 339 (2009), 187–195 | DOI
[19] T. Koishi, K. Yasuoka, S. Fujikawa, X. C. Zeng, “Measurement of Contact-Angle Hysteresis for Droplets on Nanopillared Surface and in the Cassie and Wenzel States: A Molecular Dynamics Simulation Study”, ACS Nano, 5 (2011), 6834–6842 | DOI
[20] F.C. Wang, Y.P. Zhao, “Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study”, Colloid and Polymer Science, 291 (2013), 307–315 | DOI
[21] D.C. Rapaport, The Art of Molecular Dynamics Simulation, Cambridge Univer. Press, 2004, 565 pp. | Zbl
[22] V.L. Malyshev, D.F. Marin, E.F. Moiseeva, N.A. Gumerov, I.Sh. Akhatov, “Uskorenie molekuliarno-dinamicheskogo modelirovaniia nepoliarnyh molekul pri pomoshchi GPU”, Vestnik NNGU, 2014, no. 3, 126–133
[23] E.F. Moiseeva, D.F. Marin, V.L. Malyshev, N.A. Gumerov, I.Sh. Akhatov, “Issledovanie kontaktnogo ugla i obiema poverkhnostnogo nanopuzyrka metodami molekuliarnoy dinamiki”, Matematicheskoe modelirovanie, 27:4 (2015), 115–126 | Zbl
[24] H. Weijs, A. Marchand, A. Bruno, D. Lohse, “Origin of line tension for a Lennard–Jones nanodroplet”, Physics of Fluid, 23 (2011), 022001 | DOI
[25] V.I. Morariu, B.V. Srinivasan, V.C. Raykar, R. Duraiswami, L. S. Davis, “Automatic online tuning for fast Gaussian summation”, Advances in Neural Information Processing Systems (NIPS), 2008 (data obrascheniya: 22.11.2016) http://papers.nips.cc/paper/3420-automatic-online-tuning-for-fast-gaussian-summation
[26] F.C. Wang, Y.P. Zhao, “Contact angle hysteresis at the nanoscale: a molecular dynamics simulation study”, Colloid and Polymer Science, 291 (2013), 307–315 | DOI