GPU utilization for speed up the solution of the three-dimensional engineering tasks of open flows hydraulics
Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 74-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is dedicated to adaptation for the graphic accelerator (GPU) of the numerical open flow simulation algorithms in the planned and 3D setting. Algorithms are suitable for the simulation of heat or impurities transport in the reservoirs, for the calculation of the wind waves transformation and other tasks that require a long time, even when parallelizing on the CPU. A special feature is the GPU implementation of the algorithms based on the multi-layer control volume method, taking into account the real depth pressure profile. Effectively implemented on the GPU simple iterative refinement method of the pressure profile along the vertical is used for 3D-tasks. Some of the OpenCL language peculiarities, increasing the computing efficiency on the graphics accelerator are described. The calculations examples with comparison the elapsed time for CPU and GPU are presented.
Keywords: open flow, fully 3D model, wind waves, OpenCL, GPU, non-hydrostatic, multi-layer model.
@article{MM_2017_29_8_a5,
     author = {V. A. Prokofyev},
     title = {GPU utilization for speed up the solution of the three-dimensional engineering tasks of open flows hydraulics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {74--94},
     publisher = {mathdoc},
     volume = {29},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a5/}
}
TY  - JOUR
AU  - V. A. Prokofyev
TI  - GPU utilization for speed up the solution of the three-dimensional engineering tasks of open flows hydraulics
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 74
EP  - 94
VL  - 29
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_8_a5/
LA  - ru
ID  - MM_2017_29_8_a5
ER  - 
%0 Journal Article
%A V. A. Prokofyev
%T GPU utilization for speed up the solution of the three-dimensional engineering tasks of open flows hydraulics
%J Matematičeskoe modelirovanie
%D 2017
%P 74-94
%V 29
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_8_a5/
%G ru
%F MM_2017_29_8_a5
V. A. Prokofyev. GPU utilization for speed up the solution of the three-dimensional engineering tasks of open flows hydraulics. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 74-94. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a5/

[1] B.V. Divinkii, R.B. Kosian, S.B. Kuklev, “Parametry vetrovogo volneniia na zashchishchennykh akvatoriiakh”, Fundamentalnaia i prikladnaia gidrofizika, 2010, no. 4(10), 5–16

[2] S.B. Kuklev, B.V. Divinskii, “Nekotorye aspecti matematicheskogo modelirovaniia gidrodinamicheskikh protsessov v zavolnolomnom prostranstve iskusstvennikh akvatorii”, Tr. mezhd. konf. “Sozdanie i ispolzovanie iskusstvenikh zemelnikh uchastkov na beregakh i akvatoriiakh vodnikh obiektov” (Novosibirsk, 2009), 80–99

[3] A.G. Kulikovskii, N.V. Pogorelov, A.Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh system uravnenii, Fizmatlit, M., 2001, 608 pp.

[4] C.G. Mingham, D.M. Causon, “Calculation of unsteady bore diffraction using a high resolution finite volume method”, Journal of Hydraulic research, 38:1 (2000), 49–56 | DOI

[5] V.A. Prokofev, “Uchet skachkov profilia dna pri chislennom modelirovanii razrivnikh techenii”, Vodnie resursy, 32:3 (2005), 282–294

[6] V.A. Prokofev, “Sovremennye chislennye skhemy na baze metoda kontrolnogo obiema dlia modelirovaniia burnikh potokov i voln proryva”, Gidrotekhnich. stroitelstvo, 2002, no. 7, 22–29

[7] E. Audusse, M-O. Bristeau, B. Perthame, J. Sainte-Marie, “A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation”, ESAIM: M2AN, 45:1 (2011), 169–200 | DOI | MR | Zbl

[8] E. Audusse, M-O. Bristeau, M. Pelanti, J. Sainte-Marie, “Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multi-layer model. Kinetic interpretation and numeral solution”, Journal of Computational Physics, 230:9 (2011), 3453–3478 | DOI | MR | Zbl

[9] V.A. Prokofyev, “Application of unified 3D hydro-thermal model of a reservoir for estimation of HPP construction influence on environment”, Proc. of the International Symposium on Dams on changing word, sect. 5, ICOLD, Kyoto, 2012, 69–74

[10] V.A. Prokofyev, “Metod utochneniia davleniia v mnogosloinikh modeliakh melkoi vody dlia resheniia volnovikh zadach”, Matematicheskoe modelirovanie, 29:6 (2017), 61–88

[11] E. Audusse, M.O. Bristeau, “Finite-volume solvers for a multilayer Saint-Venant system”, Int. J. Appl. Math. Comp. Sci., 17:3 (2007), 311–320 | MR | Zbl

[12] A.L. Steward, P.J. Dellar, “Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane”, J. of Fluid Mechanics, 651 (2010), 387–413 | DOI | MR

[13] A.I. Sukhinov, A.E. Chistyakov, E.V. Alekseenko, “Numerical realization of the three-dimensional model of hydrodynamics for shallow water basins on a high-performance system”, Math. Models and Comp. Simulations, 3:5 (2011), 562–574 | DOI | MR | Zbl

[14] V.A. Prokofyev, http://gofile.me/2Zesj/Mv8UWIb95

[15] K.R. Tubbs, F.T.-C. Tsai, “Multilayer shallow water flow using lattice Boltzmann method with high performance computing”, Advances in Water Resources, 329 (2009), 1767–1776 | DOI

[16] M. Januszewski, M. Kostur, “Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method”, Computer Physics Communications, 185:9 (2014), 2350–2368 | DOI | Zbl

[17] R. Vacondio, A. Dal Palu, P. Mignosa, “GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations”, Environmental modelling Software, 57 (2014), 60–75 | DOI

[18] A. Breuer, M. Bader, “Teaching Parallel Programming Models on a Shallow-Water Code”, Proc. of the 2012 11th Int. Symposium on Parallel and Distributed Comp., ISPDC'12, 2012, 301–308 | DOI

[19] M. Asunci, J.M. Mantas, M.J. Castro, “Programming CUDA-based GPUs to simulate two-layer shallow water flows”, Proc. of the 16th international Euro-Par conference on Parallel processing, v. II, 2010, 353–364

[20] Mike 21 Flow Model FM. Parallelization using GPU, Benchmarking report, DHI, 2014 (svob. dostup cherez Internet)

[21] Mike 3 Flow Model FM. Parallelization using GPU, Benchmarking report, DHI, 2016 (svob. dostup cherez Internet)

[22] A.E. Chistiakov, D.S. Khachunts, E.F. Timofeeva, N.A. Fomenko, “Programmnaia realizatsiia diskretnoi matematicheskoi modeli rascheta pribrezhnikh volnovikh protsessov na osnove reguliarizirovannikh po B.N. Chetverushkinu iavnikh skhem na vychislitelnikh sistemakh s massovym parallelizmom”, Fundamentalnye issledovaniia, 2015, no. 12(3), 540–544 | Zbl

[23] S. Beji, J.A. Battjes, “Experimental investigation of wave propagation over a bar”, Coastal Engineering, 19 (1993), 151–162 | DOI

[24] J.C.W. Berkhoff, N. Booy, A.C. Radder, “Verification of numerical wave propagation models for simple harmonic linear water waves”, Coastal Engineering, 6 (1982), 255–279 | DOI

[25] S.A. Thorpe, “On standing internal gravity waves of finite amplitude”, Journal of Fluid Mechanics, 32 (1968), 489–528 | DOI | Zbl

[26] O.B. Fringer, S.W. Armfield, R.L. Street, “Reducing numerical diffusion in interfacial gravity wave simulations”, Int. J. Numer. Meth. Fluids, 49 (2005), 301–329 | DOI | MR | Zbl

[27] P.J. Visser, “Laboratory measurements of uniform longshore currents”, Coastal Engineering, 15 (1991), 563–593 | DOI

[28] M.S. Longuet-Higgins, “Longshore currents generated by obliquely incident sea waves, 1–2”, J. Geophys. Res., 75 (1970), 6778–6801 | DOI

[29] G. Ma, F. Shi, J.T. Kirby, “Shock-capturing non-hydrostatic model for fully dispersive surface wave processes”, Ocean Modelling, 43–44 (2012), 22–35

[30] B.V. Divinsky, R.D. Kos'yan, J. Gruene, “Influence of the Wave Spectrum Form on the Bottom Sediment Dynamics”, Oceanology, 54:2 (2014), 132–143 | DOI | DOI

[31] N. Ohle, K.-F. Daemrich, E. Tautenhain, “Influence of spectral shape on wave parameters and design methods in the domain”, Ocean waves measurement and analysis, Fifth Intern. Symposium WAVES (Madrid, 2005), 150 | Zbl