Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_8_a5, author = {V. A. Prokofyev}, title = {GPU utilization for speed up the solution of the three-dimensional engineering tasks of open flows hydraulics}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {74--94}, publisher = {mathdoc}, volume = {29}, number = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a5/} }
TY - JOUR AU - V. A. Prokofyev TI - GPU utilization for speed up the solution of the three-dimensional engineering tasks of open flows hydraulics JO - Matematičeskoe modelirovanie PY - 2017 SP - 74 EP - 94 VL - 29 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_8_a5/ LA - ru ID - MM_2017_29_8_a5 ER -
V. A. Prokofyev. GPU utilization for speed up the solution of the three-dimensional engineering tasks of open flows hydraulics. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 74-94. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a5/
[1] B.V. Divinkii, R.B. Kosian, S.B. Kuklev, “Parametry vetrovogo volneniia na zashchishchennykh akvatoriiakh”, Fundamentalnaia i prikladnaia gidrofizika, 2010, no. 4(10), 5–16
[2] S.B. Kuklev, B.V. Divinskii, “Nekotorye aspecti matematicheskogo modelirovaniia gidrodinamicheskikh protsessov v zavolnolomnom prostranstve iskusstvennikh akvatorii”, Tr. mezhd. konf. “Sozdanie i ispolzovanie iskusstvenikh zemelnikh uchastkov na beregakh i akvatoriiakh vodnikh obiektov” (Novosibirsk, 2009), 80–99
[3] A.G. Kulikovskii, N.V. Pogorelov, A.Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh system uravnenii, Fizmatlit, M., 2001, 608 pp.
[4] C.G. Mingham, D.M. Causon, “Calculation of unsteady bore diffraction using a high resolution finite volume method”, Journal of Hydraulic research, 38:1 (2000), 49–56 | DOI
[5] V.A. Prokofev, “Uchet skachkov profilia dna pri chislennom modelirovanii razrivnikh techenii”, Vodnie resursy, 32:3 (2005), 282–294
[6] V.A. Prokofev, “Sovremennye chislennye skhemy na baze metoda kontrolnogo obiema dlia modelirovaniia burnikh potokov i voln proryva”, Gidrotekhnich. stroitelstvo, 2002, no. 7, 22–29
[7] E. Audusse, M-O. Bristeau, B. Perthame, J. Sainte-Marie, “A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation”, ESAIM: M2AN, 45:1 (2011), 169–200 | DOI | MR | Zbl
[8] E. Audusse, M-O. Bristeau, M. Pelanti, J. Sainte-Marie, “Approximation of the hydrostatic Navier–Stokes system for density stratified flows by a multi-layer model. Kinetic interpretation and numeral solution”, Journal of Computational Physics, 230:9 (2011), 3453–3478 | DOI | MR | Zbl
[9] V.A. Prokofyev, “Application of unified 3D hydro-thermal model of a reservoir for estimation of HPP construction influence on environment”, Proc. of the International Symposium on Dams on changing word, sect. 5, ICOLD, Kyoto, 2012, 69–74
[10] V.A. Prokofyev, “Metod utochneniia davleniia v mnogosloinikh modeliakh melkoi vody dlia resheniia volnovikh zadach”, Matematicheskoe modelirovanie, 29:6 (2017), 61–88
[11] E. Audusse, M.O. Bristeau, “Finite-volume solvers for a multilayer Saint-Venant system”, Int. J. Appl. Math. Comp. Sci., 17:3 (2007), 311–320 | MR | Zbl
[12] A.L. Steward, P.J. Dellar, “Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a non-traditional beta-plane”, J. of Fluid Mechanics, 651 (2010), 387–413 | DOI | MR
[13] A.I. Sukhinov, A.E. Chistyakov, E.V. Alekseenko, “Numerical realization of the three-dimensional model of hydrodynamics for shallow water basins on a high-performance system”, Math. Models and Comp. Simulations, 3:5 (2011), 562–574 | DOI | MR | Zbl
[14] V.A. Prokofyev, http://gofile.me/2Zesj/Mv8UWIb95
[15] K.R. Tubbs, F.T.-C. Tsai, “Multilayer shallow water flow using lattice Boltzmann method with high performance computing”, Advances in Water Resources, 329 (2009), 1767–1776 | DOI
[16] M. Januszewski, M. Kostur, “Sailfish: A flexible multi-GPU implementation of the lattice Boltzmann method”, Computer Physics Communications, 185:9 (2014), 2350–2368 | DOI | Zbl
[17] R. Vacondio, A. Dal Palu, P. Mignosa, “GPU-enhanced Finite Volume Shallow Water solver for fast flood simulations”, Environmental modelling Software, 57 (2014), 60–75 | DOI
[18] A. Breuer, M. Bader, “Teaching Parallel Programming Models on a Shallow-Water Code”, Proc. of the 2012 11th Int. Symposium on Parallel and Distributed Comp., ISPDC'12, 2012, 301–308 | DOI
[19] M. Asunci, J.M. Mantas, M.J. Castro, “Programming CUDA-based GPUs to simulate two-layer shallow water flows”, Proc. of the 16th international Euro-Par conference on Parallel processing, v. II, 2010, 353–364
[20] Mike 21 Flow Model FM. Parallelization using GPU, Benchmarking report, DHI, 2014 (svob. dostup cherez Internet)
[21] Mike 3 Flow Model FM. Parallelization using GPU, Benchmarking report, DHI, 2016 (svob. dostup cherez Internet)
[22] A.E. Chistiakov, D.S. Khachunts, E.F. Timofeeva, N.A. Fomenko, “Programmnaia realizatsiia diskretnoi matematicheskoi modeli rascheta pribrezhnikh volnovikh protsessov na osnove reguliarizirovannikh po B.N. Chetverushkinu iavnikh skhem na vychislitelnikh sistemakh s massovym parallelizmom”, Fundamentalnye issledovaniia, 2015, no. 12(3), 540–544 | Zbl
[23] S. Beji, J.A. Battjes, “Experimental investigation of wave propagation over a bar”, Coastal Engineering, 19 (1993), 151–162 | DOI
[24] J.C.W. Berkhoff, N. Booy, A.C. Radder, “Verification of numerical wave propagation models for simple harmonic linear water waves”, Coastal Engineering, 6 (1982), 255–279 | DOI
[25] S.A. Thorpe, “On standing internal gravity waves of finite amplitude”, Journal of Fluid Mechanics, 32 (1968), 489–528 | DOI | Zbl
[26] O.B. Fringer, S.W. Armfield, R.L. Street, “Reducing numerical diffusion in interfacial gravity wave simulations”, Int. J. Numer. Meth. Fluids, 49 (2005), 301–329 | DOI | MR | Zbl
[27] P.J. Visser, “Laboratory measurements of uniform longshore currents”, Coastal Engineering, 15 (1991), 563–593 | DOI
[28] M.S. Longuet-Higgins, “Longshore currents generated by obliquely incident sea waves, 1–2”, J. Geophys. Res., 75 (1970), 6778–6801 | DOI
[29] G. Ma, F. Shi, J.T. Kirby, “Shock-capturing non-hydrostatic model for fully dispersive surface wave processes”, Ocean Modelling, 43–44 (2012), 22–35
[30] B.V. Divinsky, R.D. Kos'yan, J. Gruene, “Influence of the Wave Spectrum Form on the Bottom Sediment Dynamics”, Oceanology, 54:2 (2014), 132–143 | DOI | DOI
[31] N. Ohle, K.-F. Daemrich, E. Tautenhain, “Influence of spectral shape on wave parameters and design methods in the domain”, Ocean waves measurement and analysis, Fifth Intern. Symposium WAVES (Madrid, 2005), 150 | Zbl