Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_8_a4, author = {B. N. Chetverushkin and I. V. Mingalev and K. G. Orlov and V. M. Chechetkin and V. S. Mingalev and O. V. Mingalev}, title = {Gasdynamic general circulation model of the lower and middle atmosphere of the {Earth}}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--73}, publisher = {mathdoc}, volume = {29}, number = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a4/} }
TY - JOUR AU - B. N. Chetverushkin AU - I. V. Mingalev AU - K. G. Orlov AU - V. M. Chechetkin AU - V. S. Mingalev AU - O. V. Mingalev TI - Gasdynamic general circulation model of the lower and middle atmosphere of the Earth JO - Matematičeskoe modelirovanie PY - 2017 SP - 59 EP - 73 VL - 29 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_8_a4/ LA - ru ID - MM_2017_29_8_a4 ER -
%0 Journal Article %A B. N. Chetverushkin %A I. V. Mingalev %A K. G. Orlov %A V. M. Chechetkin %A V. S. Mingalev %A O. V. Mingalev %T Gasdynamic general circulation model of the lower and middle atmosphere of the Earth %J Matematičeskoe modelirovanie %D 2017 %P 59-73 %V 29 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_8_a4/ %G ru %F MM_2017_29_8_a4
B. N. Chetverushkin; I. V. Mingalev; K. G. Orlov; V. M. Chechetkin; V. S. Mingalev; O. V. Mingalev. Gasdynamic general circulation model of the lower and middle atmosphere of the Earth. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 59-73. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a4/
[1] A.S. Monin, Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, L., 1988, 423 pp.
[2] L.J. Donner et al., “The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3”, Journal of climate, 24 (2011), 3438–3519 | DOI
[3] G.S. Rivin, et al., “The COSMO-Ru system of nonhydrostatic mesoscale short-range weather forecasting of the Hydrometcenter of Russia: The second stage of implementation and development”, Russian Meteorology and Hydrology, 49:6 (2015), 400–410 | DOI
[4] V.P. Dymnikov, V.N. Lykosov, E.M. Volodin, “Problems of modeling climate and climate change”, Izvestiya, Atmospheric and Oceanic Physics, 42:5 (2006), 568–586 | DOI
[5] V.N. Lykosov i dr., Supercomputernoe modelirovanie v fisike klimaticheskoi sistemy, Izdatelstvo MGU, M., 2012, 408 pp.
[6] B.N. Chetverushkin, E.V. Shilnikov, “Software package for 3D viscous gas flow simulation on multiprocessor computer systems”, Computational Math. and Math. Physics, 48:2 (2008), 295–305 | DOI | MR | Zbl
[7] O.M. Belotserkovskii, A.M. Oparin, I.V. Mingalev, V.S. Mingalev, O.V. Mingalev, V.M. Chechetkin, “Formation of large-scale vortices in shear flows of the lower atmosphere of the earth in the region of tropical latitudes”, Cosmic Research, 47:6 (2009), 446–479 | DOI
[8] I.V. Mingalev, K.G. Orlov, V.S. Mingalev, “Mehanizm obrazovaniya poliarnykh tsiklonov i vozmozhnost ih prognoza”, Sovremennye problemy distancionnogo zondirovaniia Zemli is kosmosa, 8:1 (2011), 255–262 | Zbl
[9] I.V. Mingalev, N.M. Astafieva, K.G. Orlov, V.S. Mingalev, O.V. Mingalev, V.M. Chechetkin, “Vozmozhnost predskazaniia obrazovaniya tropicheskikh tsiklonov i uraganov po dannym sputnikovykh nabludenii”, Sovremennye problemy distancionnogo zondirovaniia Zemli is kosmosa, 8:3 (2011), 290–296
[10] I.V. Mingalev, K.G. Orlov, V.S. Mingalev, “A mechanism of formation of polar cyclones and possibility of their prediction using satellite observations”, Cosmic Research, 50:2 (2012), 160–169 | DOI
[11] I.V. Mingalev, K.G. Orlov, V.S. Mingalev, O.V. Mingalev, N.M. Astaf'eva, V.M. Chechetkin, “Numerical simulation of formation of cyclone vortex flows in the intratropical zone of convergence and their early detection”, Cosmic Research, 50:3 (2012), 233–248 | DOI
[12] I.V. Mingalev, N.M. Astafieva, K.G. Orlov, V.S. Mingalev, O.V. Mingalev, V.M. Chechetkin, “A simulation study of the formation of large-scale cyclonic and anticyclonic vortices in the vicinity of the intertropical convergence zone”, ISRN Geophysics, 2013, 215362, 12 pp.
[13] I. Mingalev, K. Orlov, V. Mingalev, “A Modeling Study of the Initial Formation of Polar Lows in the Vicinity of the Arctic Front”, Advances in Meteorology, 2014 (2014), 970547, 10 pp. | DOI
[14] I.V. Mingalev, N.M. Astafieva, K.G. Orlov, V.S. Mingalev, O.V. Mingalev, V.M. Chechetkin, “Numerical modeling of the initial formation of cyclonic vortices at tropical latitudes”, Atmospheric and Climate Sciences, 4 (2014), 899–906 | DOI
[15] A.M. Obukhov, Turbulentnost i dinamika atmosfery, Gidrometeoizdat, L., 1988, 413 pp.
[16] Parker C. Reist, Introduction to aerosol science, Macmillan, New York; Collier Macmillan, Cop., London, 1984, 299 pp.
[17] B.N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 204 pp.
[18] B.A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave”, J. Geophys. Res., 109 (2004), D02110 | DOI
[19] B.A. Fomin, M. P. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave”, J. Geophys. Res., 110 (2005), D02106, 10 pp. | DOI
[20] A.V. Shilkov, M.N. Gerthev, “Verification of the Lebesgue averaging method”, Mathematical Models and Computer Simulations, 8:2 (2016), 93–107 | DOI | MR | Zbl
[21] V.S. Mingalev, I.V. Mingalev, O.V. Mingalev, A.M. Oparin, K.G. Orlov, “Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid”, Comput. Math. and Math. Phys., 50:5 (2010), 877–899 | DOI | MR | Zbl
[22] V.A. Bakhtin, V.A. Kryukov, B.N. Chetverushkin, E.V. Shil'nikov, “Extension of the DVM parallel programming model for clusters with heterogeneous nodes”, Doklady Mathem., 84:3 (2011), 879–881 | DOI | MR
[23] J.M. Picone, A.E. Hedin, D.P. Drob, A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues”, J. Geophys. Res., 107:A12 (2002), 1468–1483