Gasdynamic general circulation model of the lower and middle atmosphere of the Earth
Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 59-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a brief description of the General circulation model of the lower and middle atmosphere of the Earth, designed to study atmospheric dynamics in a wide range of spatial– temporal scales. The model is based on numerical integration of the complete system equations which describe dynamics of a viscous atmospheric gas using spatial grid with high resolution. The model takes into account the surface relief and the presence in the atmosphere aerosols in the form of microdroplets of water ice particles, and phase transitions of water vapor to aerosol particles and back.
Keywords: general circulation model, atmospheric dynamics, numerical simulation.
@article{MM_2017_29_8_a4,
     author = {B. N. Chetverushkin and I. V. Mingalev and K. G. Orlov and V. M. Chechetkin and V. S. Mingalev and O. V. Mingalev},
     title = {Gasdynamic general circulation model of the lower and middle atmosphere of the {Earth}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--73},
     publisher = {mathdoc},
     volume = {29},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a4/}
}
TY  - JOUR
AU  - B. N. Chetverushkin
AU  - I. V. Mingalev
AU  - K. G. Orlov
AU  - V. M. Chechetkin
AU  - V. S. Mingalev
AU  - O. V. Mingalev
TI  - Gasdynamic general circulation model of the lower and middle atmosphere of the Earth
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 59
EP  - 73
VL  - 29
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_8_a4/
LA  - ru
ID  - MM_2017_29_8_a4
ER  - 
%0 Journal Article
%A B. N. Chetverushkin
%A I. V. Mingalev
%A K. G. Orlov
%A V. M. Chechetkin
%A V. S. Mingalev
%A O. V. Mingalev
%T Gasdynamic general circulation model of the lower and middle atmosphere of the Earth
%J Matematičeskoe modelirovanie
%D 2017
%P 59-73
%V 29
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_8_a4/
%G ru
%F MM_2017_29_8_a4
B. N. Chetverushkin; I. V. Mingalev; K. G. Orlov; V. M. Chechetkin; V. S. Mingalev; O. V. Mingalev. Gasdynamic general circulation model of the lower and middle atmosphere of the Earth. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 59-73. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a4/

[1] A.S. Monin, Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, L., 1988, 423 pp.

[2] L.J. Donner et al., “The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3”, Journal of climate, 24 (2011), 3438–3519 | DOI

[3] G.S. Rivin, et al., “The COSMO-Ru system of nonhydrostatic mesoscale short-range weather forecasting of the Hydrometcenter of Russia: The second stage of implementation and development”, Russian Meteorology and Hydrology, 49:6 (2015), 400–410 | DOI

[4] V.P. Dymnikov, V.N. Lykosov, E.M. Volodin, “Problems of modeling climate and climate change”, Izvestiya, Atmospheric and Oceanic Physics, 42:5 (2006), 568–586 | DOI

[5] V.N. Lykosov i dr., Supercomputernoe modelirovanie v fisike klimaticheskoi sistemy, Izdatelstvo MGU, M., 2012, 408 pp.

[6] B.N. Chetverushkin, E.V. Shilnikov, “Software package for 3D viscous gas flow simulation on multiprocessor computer systems”, Computational Math. and Math. Physics, 48:2 (2008), 295–305 | DOI | MR | Zbl

[7] O.M. Belotserkovskii, A.M. Oparin, I.V. Mingalev, V.S. Mingalev, O.V. Mingalev, V.M. Chechetkin, “Formation of large-scale vortices in shear flows of the lower atmosphere of the earth in the region of tropical latitudes”, Cosmic Research, 47:6 (2009), 446–479 | DOI

[8] I.V. Mingalev, K.G. Orlov, V.S. Mingalev, “Mehanizm obrazovaniya poliarnykh tsiklonov i vozmozhnost ih prognoza”, Sovremennye problemy distancionnogo zondirovaniia Zemli is kosmosa, 8:1 (2011), 255–262 | Zbl

[9] I.V. Mingalev, N.M. Astafieva, K.G. Orlov, V.S. Mingalev, O.V. Mingalev, V.M. Chechetkin, “Vozmozhnost predskazaniia obrazovaniya tropicheskikh tsiklonov i uraganov po dannym sputnikovykh nabludenii”, Sovremennye problemy distancionnogo zondirovaniia Zemli is kosmosa, 8:3 (2011), 290–296

[10] I.V. Mingalev, K.G. Orlov, V.S. Mingalev, “A mechanism of formation of polar cyclones and possibility of their prediction using satellite observations”, Cosmic Research, 50:2 (2012), 160–169 | DOI

[11] I.V. Mingalev, K.G. Orlov, V.S. Mingalev, O.V. Mingalev, N.M. Astaf'eva, V.M. Chechetkin, “Numerical simulation of formation of cyclone vortex flows in the intratropical zone of convergence and their early detection”, Cosmic Research, 50:3 (2012), 233–248 | DOI

[12] I.V. Mingalev, N.M. Astafieva, K.G. Orlov, V.S. Mingalev, O.V. Mingalev, V.M. Chechetkin, “A simulation study of the formation of large-scale cyclonic and anticyclonic vortices in the vicinity of the intertropical convergence zone”, ISRN Geophysics, 2013, 215362, 12 pp.

[13] I. Mingalev, K. Orlov, V. Mingalev, “A Modeling Study of the Initial Formation of Polar Lows in the Vicinity of the Arctic Front”, Advances in Meteorology, 2014 (2014), 970547, 10 pp. | DOI

[14] I.V. Mingalev, N.M. Astafieva, K.G. Orlov, V.S. Mingalev, O.V. Mingalev, V.M. Chechetkin, “Numerical modeling of the initial formation of cyclonic vortices at tropical latitudes”, Atmospheric and Climate Sciences, 4 (2014), 899–906 | DOI

[15] A.M. Obukhov, Turbulentnost i dinamika atmosfery, Gidrometeoizdat, L., 1988, 413 pp.

[16] Parker C. Reist, Introduction to aerosol science, Macmillan, New York; Collier Macmillan, Cop., London, 1984, 299 pp.

[17] B.N. Chetverushkin, Matematicheskoe modelirovanie zadach dinamiki izluchaiushchego gaza, Nauka, M., 1985, 204 pp.

[18] B.A. Fomin, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 1. FKDM, fast k-distribution model for the longwave”, J. Geophys. Res., 109 (2004), D02110 | DOI

[19] B.A. Fomin, M. P. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave”, J. Geophys. Res., 110 (2005), D02106, 10 pp. | DOI

[20] A.V. Shilkov, M.N. Gerthev, “Verification of the Lebesgue averaging method”, Mathematical Models and Computer Simulations, 8:2 (2016), 93–107 | DOI | MR | Zbl

[21] V.S. Mingalev, I.V. Mingalev, O.V. Mingalev, A.M. Oparin, K.G. Orlov, “Generalization of the hybrid monotone second-order finite difference scheme for gas dynamics equations to the case of unstructured 3D grid”, Comput. Math. and Math. Phys., 50:5 (2010), 877–899 | DOI | MR | Zbl

[22] V.A. Bakhtin, V.A. Kryukov, B.N. Chetverushkin, E.V. Shil'nikov, “Extension of the DVM parallel programming model for clusters with heterogeneous nodes”, Doklady Mathem., 84:3 (2011), 879–881 | DOI | MR

[23] J.M. Picone, A.E. Hedin, D.P. Drob, A. C. Aikin, “NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues”, J. Geophys. Res., 107:A12 (2002), 1468–1483