Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_8_a3, author = {Yu. Yanilkin and O. Toporova and V. Kolobyanin}, title = {Anisotropic closure model in mixed cells}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {44--58}, publisher = {mathdoc}, volume = {29}, number = {8}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a3/} }
Yu. Yanilkin; O. Toporova; V. Kolobyanin. Anisotropic closure model in mixed cells. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 44-58. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a3/
[1] R. Tipton, CALE mixed zone pressure relaxation, private communication, tech. rep., Lawrence Livermore National Laboratory, 1989
[2] D. Miller, G. Zimmerman, An algorithm for time evolving volume fractions in mixed zones in Lagrangian hydrodynamics calculations, rep. UCRL-PRES-223908, Lawrence Livermore National Laboratory, 2006
[3] M. Baer, J. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials”, Int. J. Multiphase Flow, 12 (1986), 861–889 | DOI | Zbl
[4] A. Murrone, H. Guillard, “A five equation reduced model for compressible two phase flow problems”, Journal of Computational Physics, 202 (2005), 664–698 | DOI | MR | Zbl
[5] J. Kamm, M. Shashkov, J. Fung, A. Harrison, T. Canfield, “A comparative study of various pressure relaxation closure models for one-dimensional two-material Lagrangian hydrodynamics”, Int. J. Numer. Meth. Fluids, 65:11–12 (2010), 1311–1324 | MR
[6] M. Shashkov, “Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes”, Int. J. Numer. Meth. Fluids, 56 (2007), 1497–1504 | DOI | MR
[7] M. Francois, M. Shashkov, E. Dendy, R. Lowrie, Mixture models for multimaterial Eulerian and Lagrangian hydrocodes, rep. LAUR-10-03391, Los Alamos National Laboratory, 2010
[8] Y. Yanilkin, E. Goncharov, V. Kolobyanin, V. Sadchikov, J. Kamm, M. Shashkov, W. Rider, “Multimaterial pressure relaxation methods for Lagrangian hydrodynamics”, Computers Fluids, 83 (2013), 137–143 | DOI | MR | Zbl
[9] Y. Bondarenko, Y. Yanilkin, “Computation of the thermodynamic parameters in the mixed cells in gas dynamics”, Mathematical Modeling, 14 (2002), 63–81 | Zbl
[10] V.I. Delov, V.V. Sadchikov, “Sravnenie nekotorykh modelei dlia rascheta termodinamicheskikh parametrov neodnorodnykh po sostavu lagranzhevykh iacheek”, VANT, ser. MMFP, 2005, no. 3, 57–70
[11] E.A. Goncharov, Iu.V. Ianilkin, “Novyi metod rascheta termodinamicheskogo sostoianiia veshchestv v smeshannykh iacheikakh”, VANT, ser. MMFP, 2004, no. 3, 16–30
[12] A. Barlow, “A new Lagrangian scheme for multimaterial cells”, Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Computational Fluid Dynamics Conference (Swansea, Wales, U.K., 2001), 235–294
[13] A. Despres, F. Lagoutiere, “Numerical solution of two-component compressible fluid model with interfaces”, Progress in Computational Fluid Dynamics, 7 (2007), 295–310 | DOI | MR | Zbl
[14] R. Hill, A. Barlow, M. Shashkov, Interface-aware sub-scale dynamics closure model, rep. LAUR-12-21959, Loughborough, UK, 2012
[15] J.W. Grove, “Pressure-velocity equilibrium hydrodynamic models”, Acta Mathematica Scientia, 30B:2 (2010), 563–594 | DOI | MR | Zbl
[16] S.M. Bakhrakh, V.P. Spiridonov, A.A. Shanin, “Metod rascheta dvumernykh osesimmetrichnykh gazodinamicheskikh techenii neodnorodnoi sredy v lagranzhevo-eilerovykh peremennykh”, DAN SSSR, 276:4 (1984)
[17] F.Kh. Kharlou, Chislennyi metod chastits v iacheikakh dlia zadach gidrodinamiki, Vychislitelnye metody v gidrodinamike, Mir, M., 1967
[18] E.A. Goncharov, V.Iu. Kolobianin, Iu.V. Ianilkin, “Metod zamykaniia uravnenii lagranzhevoi gazodinamiki v smeshannykh iacheikakh, osnovannyi na ravenstve skorostei komponentov”, VANT, ser. MMFP, 2006, no. 4, 100–105
[19] A. Barlow, R. Hill, M. Shashkov, “Constrained optimization framework for interface-aware subscale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian–Eulerian hydrodynamics”, Journal of Computational Physics, 2014 | MR
[20] Iu.V. Ianilkin, S.P. Beliaev, Iu.A. Bondarenko i dr., “Eilerovy chislennye metodiki EGAK i TREK dlia modelirovaniia mnogomernykh techenii mnogokomponentnoi sredy”, Trudy RFIATSVNIIEF, 12, Sarov, 2008, 54–65
[21] E.A. Goncharov, Iu.V. Ianilkin, V.Iu. Kolobianin, “Ob opredelenii iskusstvennoi viazkosti dlia komponentov smeshannykh iacheek s geterogennoi smesiu veshchestv”, VANT, ser. MMFP, 2010, no. 3, 15–29
[22] Yu. Yanilkin et al., Study and Implementation of Multi-Material Pressure Relaxation Methods for Lagrangian Hydrodynamics, Report under Task Order 039, LANS/VNIIEF Agreement No 37713-000-02-35, (Deliverable 5.2), LANS, 2010, 139 pp.
[23] Yu. Yanilkin et al., Study and Implementation of Multi-Material Pressure Relaxation Methods for Lagrangian Hydrodynamics, Report under Task Order 039, LANS/VNIIEF Agreement No 37713-000-02-35, (Deliverable 5.3), LANS, 2011, 59 pp.
[24] Iu.V. Ianilkin, V.P. Statsenko, V.I. Kozlov (red.), Matematicheskoe modelirovanie turbulentnogo peremeshivaniia v szhimaemykh sredakh. Kurs lektsii, FGUP RFIATS-VNIIEF, Sarov, 2009
[25] Iu.V. Ianilkin (red.), Kod EGIDA-2D dlia modelirovaniia dvumernykh zadach, Uchebnoe posobie, v. 1, FGUP RFIATS-VNIIEF, Sarov, 2008
[26] A.A. Kraiukhin, V.A. Svidinskii, A.L. Stadnik, Iu.V. Ianilkin, “Nestatsionarnye zadachi dlia testirovaniia uprugoplasticheskikh metodik”, VANT, ser. MMFP, 2016, no. 2, 17–30
[27] R. Saurel, R. Abgrall, “A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows”, Journal of Computational Physics, 150 (1999), 425–467 | DOI | MR | Zbl
[28] B. Plohr, “Shockless acceleration of thin plates modeled by a tracled random choice method”, AIAA J., 26 (1988), 470–478 | DOI | Zbl
[29] G. Sod, “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, Journal of Computational Physics, 27 (1978), 1–31 | DOI | MR | Zbl