Anisotropic closure model in mixed cells
Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 44-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper offers a new anisotropic closure model for equations of Lagrangian gas dynamics and elastoplastic in mixed cells containing several components (materials). The model is realized in code EGAK, numerical research of a method on test problems is conducted. The paper presents full statements of two one-dimensional and one two-dimensional problems, and also the description of processing technique for results. The numerical results are compared to results obtained by another closure model which is available in code EGAK, and analytical decisions. The analysis and discussion of calculations results are presented.
Keywords: closure models, Lagrange gas dynamics, mixed cells, code EGAK.
@article{MM_2017_29_8_a3,
     author = {Yu. Yanilkin and O. Toporova and V. Kolobyanin},
     title = {Anisotropic closure model in mixed cells},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--58},
     publisher = {mathdoc},
     volume = {29},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a3/}
}
TY  - JOUR
AU  - Yu. Yanilkin
AU  - O. Toporova
AU  - V. Kolobyanin
TI  - Anisotropic closure model in mixed cells
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 44
EP  - 58
VL  - 29
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_8_a3/
LA  - ru
ID  - MM_2017_29_8_a3
ER  - 
%0 Journal Article
%A Yu. Yanilkin
%A O. Toporova
%A V. Kolobyanin
%T Anisotropic closure model in mixed cells
%J Matematičeskoe modelirovanie
%D 2017
%P 44-58
%V 29
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_8_a3/
%G ru
%F MM_2017_29_8_a3
Yu. Yanilkin; O. Toporova; V. Kolobyanin. Anisotropic closure model in mixed cells. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 44-58. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a3/

[1] R. Tipton, CALE mixed zone pressure relaxation, private communication, tech. rep., Lawrence Livermore National Laboratory, 1989

[2] D. Miller, G. Zimmerman, An algorithm for time evolving volume fractions in mixed zones in Lagrangian hydrodynamics calculations, rep. UCRL-PRES-223908, Lawrence Livermore National Laboratory, 2006

[3] M. Baer, J. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials”, Int. J. Multiphase Flow, 12 (1986), 861–889 | DOI | Zbl

[4] A. Murrone, H. Guillard, “A five equation reduced model for compressible two phase flow problems”, Journal of Computational Physics, 202 (2005), 664–698 | DOI | MR | Zbl

[5] J. Kamm, M. Shashkov, J. Fung, A. Harrison, T. Canfield, “A comparative study of various pressure relaxation closure models for one-dimensional two-material Lagrangian hydrodynamics”, Int. J. Numer. Meth. Fluids, 65:11–12 (2010), 1311–1324 | MR

[6] M. Shashkov, “Closure models for multimaterial cells in arbitrary Lagrangian–Eulerian hydrocodes”, Int. J. Numer. Meth. Fluids, 56 (2007), 1497–1504 | DOI | MR

[7] M. Francois, M. Shashkov, E. Dendy, R. Lowrie, Mixture models for multimaterial Eulerian and Lagrangian hydrocodes, rep. LAUR-10-03391, Los Alamos National Laboratory, 2010

[8] Y. Yanilkin, E. Goncharov, V. Kolobyanin, V. Sadchikov, J. Kamm, M. Shashkov, W. Rider, “Multimaterial pressure relaxation methods for Lagrangian hydrodynamics”, Computers Fluids, 83 (2013), 137–143 | DOI | MR | Zbl

[9] Y. Bondarenko, Y. Yanilkin, “Computation of the thermodynamic parameters in the mixed cells in gas dynamics”, Mathematical Modeling, 14 (2002), 63–81 | Zbl

[10] V.I. Delov, V.V. Sadchikov, “Sravnenie nekotorykh modelei dlia rascheta termodinamicheskikh parametrov neodnorodnykh po sostavu lagranzhevykh iacheek”, VANT, ser. MMFP, 2005, no. 3, 57–70

[11] E.A. Goncharov, Iu.V. Ianilkin, “Novyi metod rascheta termodinamicheskogo sostoianiia veshchestv v smeshannykh iacheikakh”, VANT, ser. MMFP, 2004, no. 3, 16–30

[12] A. Barlow, “A new Lagrangian scheme for multimaterial cells”, Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, ECCOMAS Computational Fluid Dynamics Conference (Swansea, Wales, U.K., 2001), 235–294

[13] A. Despres, F. Lagoutiere, “Numerical solution of two-component compressible fluid model with interfaces”, Progress in Computational Fluid Dynamics, 7 (2007), 295–310 | DOI | MR | Zbl

[14] R. Hill, A. Barlow, M. Shashkov, Interface-aware sub-scale dynamics closure model, rep. LAUR-12-21959, Loughborough, UK, 2012

[15] J.W. Grove, “Pressure-velocity equilibrium hydrodynamic models”, Acta Mathematica Scientia, 30B:2 (2010), 563–594 | DOI | MR | Zbl

[16] S.M. Bakhrakh, V.P. Spiridonov, A.A. Shanin, “Metod rascheta dvumernykh osesimmetrichnykh gazodinamicheskikh techenii neodnorodnoi sredy v lagranzhevo-eilerovykh peremennykh”, DAN SSSR, 276:4 (1984)

[17] F.Kh. Kharlou, Chislennyi metod chastits v iacheikakh dlia zadach gidrodinamiki, Vychislitelnye metody v gidrodinamike, Mir, M., 1967

[18] E.A. Goncharov, V.Iu. Kolobianin, Iu.V. Ianilkin, “Metod zamykaniia uravnenii lagranzhevoi gazodinamiki v smeshannykh iacheikakh, osnovannyi na ravenstve skorostei komponentov”, VANT, ser. MMFP, 2006, no. 4, 100–105

[19] A. Barlow, R. Hill, M. Shashkov, “Constrained optimization framework for interface-aware subscale dynamics closure model for multimaterial cells in Lagrangian and arbitrary Lagrangian–Eulerian hydrodynamics”, Journal of Computational Physics, 2014 | MR

[20] Iu.V. Ianilkin, S.P. Beliaev, Iu.A. Bondarenko i dr., “Eilerovy chislennye metodiki EGAK i TREK dlia modelirovaniia mnogomernykh techenii mnogokomponentnoi sredy”, Trudy RFIATSVNIIEF, 12, Sarov, 2008, 54–65

[21] E.A. Goncharov, Iu.V. Ianilkin, V.Iu. Kolobianin, “Ob opredelenii iskusstvennoi viazkosti dlia komponentov smeshannykh iacheek s geterogennoi smesiu veshchestv”, VANT, ser. MMFP, 2010, no. 3, 15–29

[22] Yu. Yanilkin et al., Study and Implementation of Multi-Material Pressure Relaxation Methods for Lagrangian Hydrodynamics, Report under Task Order 039, LANS/VNIIEF Agreement No 37713-000-02-35, (Deliverable 5.2), LANS, 2010, 139 pp.

[23] Yu. Yanilkin et al., Study and Implementation of Multi-Material Pressure Relaxation Methods for Lagrangian Hydrodynamics, Report under Task Order 039, LANS/VNIIEF Agreement No 37713-000-02-35, (Deliverable 5.3), LANS, 2011, 59 pp.

[24] Iu.V. Ianilkin, V.P. Statsenko, V.I. Kozlov (red.), Matematicheskoe modelirovanie turbulentnogo peremeshivaniia v szhimaemykh sredakh. Kurs lektsii, FGUP RFIATS-VNIIEF, Sarov, 2009

[25] Iu.V. Ianilkin (red.), Kod EGIDA-2D dlia modelirovaniia dvumernykh zadach, Uchebnoe posobie, v. 1, FGUP RFIATS-VNIIEF, Sarov, 2008

[26] A.A. Kraiukhin, V.A. Svidinskii, A.L. Stadnik, Iu.V. Ianilkin, “Nestatsionarnye zadachi dlia testirovaniia uprugoplasticheskikh metodik”, VANT, ser. MMFP, 2016, no. 2, 17–30

[27] R. Saurel, R. Abgrall, “A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows”, Journal of Computational Physics, 150 (1999), 425–467 | DOI | MR | Zbl

[28] B. Plohr, “Shockless acceleration of thin plates modeled by a tracled random choice method”, AIAA J., 26 (1988), 470–478 | DOI | Zbl

[29] G. Sod, “A Survey of Several Finite Difference Methods for Systems of Nonlinear Hyperbolic Conservation Laws”, Journal of Computational Physics, 27 (1978), 1–31 | DOI | MR | Zbl