Modeling instabilities in the relativistic electronic stream in the medium CST Particle Studio
Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 109-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We report on the features of the development of the classic vircator model in the CST Particle Studio for the investigation of the physical mechanisms of the development, coexistence and interaction of Pierce/Bursian and diocotron instabilities in relativistic electron beam. The numerical analysis of such model with the help of CST Particle Studio was carried out. We have revealed the development of the numerical instability leading to the additional small-scale space charge density modulation in the electron beam during its motion in the system. We have found out the character time scale of the instability and identified its relation with a spatial mesh step. We have conducted the study of the instability and offered the method of its suppression by the CST Particle Studio tools. A few important notes concerning the development of models of microwave devices in CST Particle Studio are presented.
Keywords: numerical simulation; beam instabilities; relativistic electron beam; vircator model; virtual cathode; CST Particle Studio; PIC-method; 3D electromagnetic model.
@article{MM_2017_29_7_a7,
     author = {S. A. Kurkin and A. A. Badarin and A. A. Koronovskii and N. S. Frolov and A. E. Hramov},
     title = {Modeling instabilities in the relativistic electronic stream in the medium {CST} {Particle} {Studio}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--122},
     publisher = {mathdoc},
     volume = {29},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a7/}
}
TY  - JOUR
AU  - S. A. Kurkin
AU  - A. A. Badarin
AU  - A. A. Koronovskii
AU  - N. S. Frolov
AU  - A. E. Hramov
TI  - Modeling instabilities in the relativistic electronic stream in the medium CST Particle Studio
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 109
EP  - 122
VL  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a7/
LA  - ru
ID  - MM_2017_29_7_a7
ER  - 
%0 Journal Article
%A S. A. Kurkin
%A A. A. Badarin
%A A. A. Koronovskii
%A N. S. Frolov
%A A. E. Hramov
%T Modeling instabilities in the relativistic electronic stream in the medium CST Particle Studio
%J Matematičeskoe modelirovanie
%D 2017
%P 109-122
%V 29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_7_a7/
%G ru
%F MM_2017_29_7_a7
S. A. Kurkin; A. A. Badarin; A. A. Koronovskii; N. S. Frolov; A. E. Hramov. Modeling instabilities in the relativistic electronic stream in the medium CST Particle Studio. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 109-122. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a7/

[1] R.C. Davidson, Physics of Nonneutral Plasmas, Imperial College Press and World Scientific Publishing Co. Pte. Ltd., 2001

[2] R.C. Davidson, H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific Publishing Company, 2001

[3] A.E. Dubinov, V.D. Selemir, “Electronic devices with virtual cathodes (review)”, J. Communication Technology and Electronics, 47:6 (2002), 575–600

[4] A.S. Shlapakovski, T. Queller, Yu.P. Bliokh, Ya.E. Krasik, “Investigations of a double-gap vircator at sub-microsecond pulse durations”, IEEE Transactions on Plasma Sciences, 40:6 (2012), 1607–1617 | DOI

[5] J. Benford, J.A. Swegle, E. Schamiloglu, High Power Microwaves, Series in Plasma Physics, third edition, CRC Press, Taylor and Francis Group, 2016

[6] S.A. Kurkin, N.S. Frolov, A.O. Rak, A.A. Koronovskii, A.A. Kurayev, A. E. Hramov, “High-power microwave amplifier based on overcritical relativistic electron beam without external magnetic field”, Applied Physics Letters, 106 (2015), 153503, 5 pp. | DOI

[7] J. Ju, D. Cai, G. Du, Y. Wang, L. Liu, J. Zhang, “Characterization of cesium iodide-coated carbon-fiber aluminum cathode for an s-band high-efficiency vircator”, IEEE Transactions on Plasma Science, 43:10 (2015), 3522–3526 | DOI

[8] A.L. Peratt, C. M. Snell., “Microwave generation from filamentation and vortex formation within magnetically confined electron beams”, Phys. Rev. Lett., 54 (1985), 1167–1170 | DOI

[9] J.A. Rome, R. J. Briggs, “Stability of sheared electron flow”, The physics of fluids, 15:5 (1972), 796–804 | DOI

[10] I.N. Kartashov, M.V. Kuzelev, “Nonlinear dynamics of diocotron instability”, Plasma Phys. Rep., 36 (2010), 524 | DOI

[11] V.V. Mikhailenko, J.S. Kim, Y.H. Jo, V.S. Mikhailenko, H. J. Lee, “Non-modal analysis of the diocotron instability for cylindrical geometry with conducting boundary”, Physics of Plasmas, 21 (2014), 052105, 2 pp. | DOI

[12] S.A. Kurkin, A.A. Badarin, A.A. Koronovskii, A. E. Hramov, “Higher harmonics generation in relativistic electron beam with virtual cathode”, Physics of Plasmas, 21 (2014), 093105 | DOI

[13] A.E. Hramov, S.A. Kurkin, A.A. Koronovskii, A. E. Filatova, “Effect of self-magnetic fields on the nonlinear dynamics of relativistic electron beam with virtual cathode”, Physics of Plasmas, 19 (2012), 112101 | DOI

[14] S.A. Kurkin, A.A. Koronovskii, A.E. Hramov, “Specific features of virtual cathode formation and dynamics with allowance for the magnetic self-field of a relativistic electron beam”, Plasma Physics Reports, 39:4 (2013), 296–306 | DOI | DOI

[15] S.A. Kurkin, A.A. Badarin, A.A. Koronovskii, A. E. Hramov, “The development and interaction of instabilities in intense relativistic electron beams”, Physics of Plasmas, 22:12 (2015) | DOI | Zbl

[16] S.A. Kurkin, A.E. Hramov, A. A. Koronovskii, “Microwave radiation power of relativistic electron beam with virtual cathode in the external magnetic field”, Applied Physics Letters, 103 (2013), 043507 | DOI

[17] User Manual, CST Particle Studio, CST AG, Darmstadt, Germany, 2011

[18] M. Clemens, T. Weiland, “Discrete electromagnetism with the finite integration technique”, Prog. Electromagn. Res., 32 (2001), 65–87 | DOI

[19] B. Krietenstein, R. Schuhmann, P. Thoma, T. Weiland, “The perfect boundary approximation technique facing the big challenge of high precision field computation”, Proc. 19th Int. Linear Accel. Conf. (Chicago, IL, USA, 1998), 860–862

[20] A.E. Khramov, S.A. Kurkin, E.N. Egorov, A.A. Koronovskii, R.A. Filatov, “Programmnyi paket dlia issledovaniia i optimizatsii nelineinykh nestatsionarnykh protsessov v mikrovolnovykh generatorakh s elektronnoi obratnoi sviaziu”, Matem. modelirovanie, 23:1 (2011), 3–18

[21] V.V. Kim, I.V. Lomonosov, A.V. Ostrik, V.E. Fortov, “Metod konechno razmernykh chastits v iacheike dlia chislennogo modelirovaniia vysokoenergeticheskikh impulsnykh vozdeistvii na veshchestvo”, Matem. modelirovanie, 18:8 (2006), 5–11

[22] O.V. Datsiuk, A.A. Bakaev, G.N. Tolmachev, “Sravnenie metoda chastits i gidrodinamicheskogo priblizheniia dlia modelirovaniia gazovogo razriada”, Matem. modelirovanie, 16:10 (2004), 29–34 | Zbl

[23] L.V. Glazychev, “Tochnost metoda makrochastits v zadache osesimmetrichnogo rasprostraneniia REP”, Matem. modelirovanie, 2:2 (1990), 143–152

[24] A.V. Pozdneev, “Modelirovanie dvizheniia chastits v mass-spektrometre s pomoshchiu parallelnogo koda chastits v iacheike”, Matem. modelirovanie, 21:6 (2009), 103–109 | Zbl

[25] K.V. Lotov, E.A. Mesiats, A.V. Snytnikov, “Modelirovanie kineticheskoi neustoichivosti elektronnogo puchka v plazme metodom chastits v iacheikakh”, Matem. modelirovanie, 26:11 (2014), 45–50 | Zbl

[26] Ju.N. Grigorev, V.A. Vshivkov, M.P. Fedoruk, Chislennoe modelirovanie metodami chastits v iacheikah, Izd-vo SO RAN, Novosibirsk, 2004, 360 pp.

[27] C.K. Birdsall, A.B. Langdon, Plasma physics via computer simulation, Taylor and Francis Group, 2005

[28] Shulim E. Tsimring, Electron beams and microwave vacuum electronics, John Wiley and Sons, Inc., Hoboken, New Jersey, 2007

[29] “A software suite with total synergy”, Microwave Journal, 49:1 (2006), 19

[30] R. Kurant, K. Fridrikhs, G. Levi, “O raznostnykh uravneniiah matematicheskoi fiziki”, UMN, 1941, no. 8, 125–160

[31] Monika C. Balk, Maryam Kiyani, Jing Zhou, Jingsong Wang, “Klystron and High Current Density Backward Wave Oscillator Simulation with CST STUDIO SUITE”, 17th IEEE international Vacuum Electronics Conference (Monterey, California, 2016, April 19–21)

[32] R.H. Levy, “Diocotron instability in a cylindrical geometry”, Physics of Fluids, 8:7 (1965), 1288–1295 | DOI | MR

[33] B. Paroli, G. Maero, R. Pozzoli, M. Rome, “Diocotron modulation in an electron plasma through continuous radio-frequency excitation”, Physics of Plasmas, 21 (2014), 122102 | DOI

[34] A.J. Peurrung, J. Fajans, “Experimental dynamics of an annulus of vorticity in a pure electron plasma”, Phys. Fluids A, 5:2 (1993) | DOI

[35] S. Pramanik, A.Y. Ender, V.I. Kuznetsov, N. Chakrabarti, “The transverse magnetic field effect on steady-state solutions of the bursian diode”, Physics of Plasmas, 22:4 (2015) | DOI

[36] V.I. Kuznetsov, Ya.A. Ender, H. Schamel, P. V. Akimov, “Switching of nonneutral plasma diodes. II. Numerical results”, Physics of Plasmas, 11:6 (2004) | DOI

[37] L.S. Bogdankevich, A.A. Rukhadze, “Stability of relativistic electron beams in a Plasma and the problem of critical currents”, Physics-Uspekhi (Advances in Physical Sciences), 14 (1971), 163–179 | DOI

[38] Debabrata Biswas, “A one-dimensional basic oscillator model of the vircator”, Physics of Plasmas, 16 (2009), 063104 | DOI

[39] G. Singh, Chaturvedi Shashank, “Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects”, Physics of Plasmas, 18 (2011), 063104 | DOI