Technology of prediction acoustic disturbances in flow far field in rotating framework
Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 94-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is dedicated to application of the Ffowks–Williams–Hawkings method for prediction of acoustical pulsations in the far field in the case when computations in the near field are performed in the rotating coordinate system. Such formulation is convenient, in particular, for numerical simulation of a single rotor. If the speed of rotation is high enough then in the classiccal «1А» Farassat formulation with the control surface connected to the mesh there arise singularities in the expression under the intergal sign. To avoid this problem we use an axialsymmetric control surface which is assumed to be unmoving in the absolute coordinate system. This allows us to reduce additional difficulties arising due to rotation to interpolation and calculating derivatives with respect to the angle.
Keywords: computational aeroacoustics, far field, Ffowcs–Williams–Hawkings method.
@article{MM_2017_29_7_a6,
     author = {P. A. Bakhvalov and V. G. Bobkov and T. K. Kozubskaya},
     title = {Technology of prediction acoustic disturbances in flow far field in rotating framework},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {94--108},
     publisher = {mathdoc},
     volume = {29},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a6/}
}
TY  - JOUR
AU  - P. A. Bakhvalov
AU  - V. G. Bobkov
AU  - T. K. Kozubskaya
TI  - Technology of prediction acoustic disturbances in flow far field in rotating framework
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 94
EP  - 108
VL  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a6/
LA  - ru
ID  - MM_2017_29_7_a6
ER  - 
%0 Journal Article
%A P. A. Bakhvalov
%A V. G. Bobkov
%A T. K. Kozubskaya
%T Technology of prediction acoustic disturbances in flow far field in rotating framework
%J Matematičeskoe modelirovanie
%D 2017
%P 94-108
%V 29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_7_a6/
%G ru
%F MM_2017_29_7_a6
P. A. Bakhvalov; V. G. Bobkov; T. K. Kozubskaya. Technology of prediction acoustic disturbances in flow far field in rotating framework. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 94-108. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a6/

[1] F. Farassat, Derivation of formulations 1 and 1A of Farassat, NASA technical memorandum, 214853, 2007

[2] I.V. Abalakin et al., “Numerical simulation of aerodynamic and acoustic characteristics of a ducted rotor”, Mathematical Models and Computer Simulations, 8:3 (2016), 309–324 | DOI | MR | Zbl

[3] M. Gelfand, G.E. Shilov, Generalized Functions, v. 1, Properties and Operations, AMS Chelsea Publishing, 1964, 423 pp. | MR

[4] A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics, Pergamon Press Ltd., Oxford, England, 1963 | MR | Zbl

[5] J.D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley Sons, New York | MR

[6] F. Farassat, M.K. Myers, Extension of Kirchgoff's formula to radiation from moving surfaces, NASA technical memorandum, 89149, 1987, 24 pp.

[7] F. Farassat, M.K. Myers, “Extension of Kirchgoff's formula to radiation from moving surfaces”, Journal of Sound and Vibration, 123:3 (1988), 451–460 | DOI | MR | Zbl

[8] M.L. Shur, F.H. Sparart, M.H. Strelets, “Raschet shuma slozhnih techenii na osnove “previh printsipov””, Matematicheskoe modelirovanie, 19:7 (2007), 5–26

[9] P.A. Bahvalov et al., “Technology of Predicting Acoustic Turbulence in the Far Field Flow”, Mathematical Models and Computer Simulations, 4:3 (2012), 363–374 | DOI | MR

[10] F. Farassat, M.K. Myers, “The Kirchgoff formula for a supersonically moving surface”, First Joint CEAS/AIAA Aeroacoustics Conference (16th AIAA Conference) (June 12–15, 1995, Munich, Germany), CEAS/AIAA Paper No. 95-062

[11] F. Farassat, K.S. Brentner, M.H. Dunn, A Study of Supersonic Surface Sources: The Ffowcs Williams-Hawkings Equation and the Kirchgoff formula, AIAA 98–2375

[12] F. Farassat, K.S. Brentner, “Modeling aerodynamically generated sound of helicopter rotors”, Prog Aerosp Sci., 39:2e3 (2003), 83e120

[13] M.L. Shur, P.R. Spalart, M.Kh. Strelets, “Noise prediction for increasingly complex jets. Part I: methods and tests”, International journal of aeroacoustics, 4:3–4 (2005), 213–246 | DOI

[14] I.V. Abalakin, V.A. Anikin, P.A. Bakhvalov, V.G. Bobkov, T.K. Kozubskaya, “Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor”, Fluid dynamics, 51:3 (2016), 419–433 | DOI | DOI | MR | Zbl

[15] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, International journal for numerical methods in fluids, 81:6 (2016), 331–356 | DOI | MR