Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_7_a6, author = {P. A. Bakhvalov and V. G. Bobkov and T. K. Kozubskaya}, title = {Technology of prediction acoustic disturbances in flow far field in rotating framework}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {94--108}, publisher = {mathdoc}, volume = {29}, number = {7}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a6/} }
TY - JOUR AU - P. A. Bakhvalov AU - V. G. Bobkov AU - T. K. Kozubskaya TI - Technology of prediction acoustic disturbances in flow far field in rotating framework JO - Matematičeskoe modelirovanie PY - 2017 SP - 94 EP - 108 VL - 29 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a6/ LA - ru ID - MM_2017_29_7_a6 ER -
%0 Journal Article %A P. A. Bakhvalov %A V. G. Bobkov %A T. K. Kozubskaya %T Technology of prediction acoustic disturbances in flow far field in rotating framework %J Matematičeskoe modelirovanie %D 2017 %P 94-108 %V 29 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_7_a6/ %G ru %F MM_2017_29_7_a6
P. A. Bakhvalov; V. G. Bobkov; T. K. Kozubskaya. Technology of prediction acoustic disturbances in flow far field in rotating framework. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 94-108. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a6/
[1] F. Farassat, Derivation of formulations 1 and 1A of Farassat, NASA technical memorandum, 214853, 2007
[2] I.V. Abalakin et al., “Numerical simulation of aerodynamic and acoustic characteristics of a ducted rotor”, Mathematical Models and Computer Simulations, 8:3 (2016), 309–324 | DOI | MR | Zbl
[3] M. Gelfand, G.E. Shilov, Generalized Functions, v. 1, Properties and Operations, AMS Chelsea Publishing, 1964, 423 pp. | MR
[4] A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics, Pergamon Press Ltd., Oxford, England, 1963 | MR | Zbl
[5] J.D. Jackson, Classical Electrodynamics, 3rd ed., John Wiley Sons, New York | MR
[6] F. Farassat, M.K. Myers, Extension of Kirchgoff's formula to radiation from moving surfaces, NASA technical memorandum, 89149, 1987, 24 pp.
[7] F. Farassat, M.K. Myers, “Extension of Kirchgoff's formula to radiation from moving surfaces”, Journal of Sound and Vibration, 123:3 (1988), 451–460 | DOI | MR | Zbl
[8] M.L. Shur, F.H. Sparart, M.H. Strelets, “Raschet shuma slozhnih techenii na osnove “previh printsipov””, Matematicheskoe modelirovanie, 19:7 (2007), 5–26
[9] P.A. Bahvalov et al., “Technology of Predicting Acoustic Turbulence in the Far Field Flow”, Mathematical Models and Computer Simulations, 4:3 (2012), 363–374 | DOI | MR
[10] F. Farassat, M.K. Myers, “The Kirchgoff formula for a supersonically moving surface”, First Joint CEAS/AIAA Aeroacoustics Conference (16th AIAA Conference) (June 12–15, 1995, Munich, Germany), CEAS/AIAA Paper No. 95-062
[11] F. Farassat, K.S. Brentner, M.H. Dunn, A Study of Supersonic Surface Sources: The Ffowcs Williams-Hawkings Equation and the Kirchgoff formula, AIAA 98–2375
[12] F. Farassat, K.S. Brentner, “Modeling aerodynamically generated sound of helicopter rotors”, Prog Aerosp Sci., 39:2e3 (2003), 83e120
[13] M.L. Shur, P.R. Spalart, M.Kh. Strelets, “Noise prediction for increasingly complex jets. Part I: methods and tests”, International journal of aeroacoustics, 4:3–4 (2005), 213–246 | DOI
[14] I.V. Abalakin, V.A. Anikin, P.A. Bakhvalov, V.G. Bobkov, T.K. Kozubskaya, “Numerical investigation of the aerodynamic and acoustical properties of a shrouded rotor”, Fluid dynamics, 51:3 (2016), 419–433 | DOI | DOI | MR | Zbl
[15] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, International journal for numerical methods in fluids, 81:6 (2016), 331–356 | DOI | MR