Numerical modeling of neutron diffusion non-stationary problems
Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 44-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

As a rule, mathematical modeling of transient processes in nuclear reactors is considered in the multigroup diffusion approximation. In this approach, the basic model involves a multidimensional system of coupled equations of the parabolic type. Similarly to common thermal phenomema, it is possible here to separate a regular mode of nuclear reactor operation that is associated with a selfsimilar behaviour of a neutron flux at large times. In this case, the main feature of dynamic processes is a fundamental eigenvalue of the corresponding spectral problem. To solve approximately time-dependent problems, we employ the fully implicit scheme of the first-order approximation and symmetric second-order scheme. Separately, we investigate the explicit-implicit scheme that greatly simplifies the transition to a new time level. An approximation in space is constructed using standard finite elements with polynomials of various degree. Numerical simulation of the regular mode was performed for the reactor VVER-1000 test problem in the two-group approximation.
Mots-clés : neutron flux equation, multigroup diffusion approximation, implicit scheme, explicit-implicit scheme.
Keywords: spectral problem, regular mode
@article{MM_2017_29_7_a3,
     author = {A. V. Avvakumov and P. N. Vabishchevich and A. O. Vasilev and V. F. Strizhev},
     title = {Numerical modeling of neutron diffusion non-stationary problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {44--62},
     publisher = {mathdoc},
     volume = {29},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a3/}
}
TY  - JOUR
AU  - A. V. Avvakumov
AU  - P. N. Vabishchevich
AU  - A. O. Vasilev
AU  - V. F. Strizhev
TI  - Numerical modeling of neutron diffusion non-stationary problems
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 44
EP  - 62
VL  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a3/
LA  - ru
ID  - MM_2017_29_7_a3
ER  - 
%0 Journal Article
%A A. V. Avvakumov
%A P. N. Vabishchevich
%A A. O. Vasilev
%A V. F. Strizhev
%T Numerical modeling of neutron diffusion non-stationary problems
%J Matematičeskoe modelirovanie
%D 2017
%P 44-62
%V 29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_7_a3/
%G ru
%F MM_2017_29_7_a3
A. V. Avvakumov; P. N. Vabishchevich; A. O. Vasilev; V. F. Strizhev. Numerical modeling of neutron diffusion non-stationary problems. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 44-62. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a3/

[1] J.J. Duderstadt, L.J. Hamilton, Nuclear Reactor Analysis, Wiley, 1976

[2] D.L. Hetrick, Dynamics of Nuclear Reactors, University of Chicago Press, 1971

[3] W.M. Stacey, Nuclear Reactor Physics, Wiley, 2007

[4] G.I. Marchuk, V.I. Lebedev, Numerical Methods in the Theory of Neutron Transport, Harwood Academic Pub., 1986 | MR

[5] E.E. Lewis, W.F. Miller, Computational Methods of Neutron Transport, American Nuclear Society, 1993

[6] T.M. Sutton, B.N. Aviles, “Diffusion theory methods for spatial kinetics calculations”, Progress in Nuclear Energy, 30:2 (1996), 119–182 | DOI

[7] N.Z. Cho, “Fundamentals and recent developments of reactor physics methods”, Nuclear Engineering and Technology, 37:1 (2005), 25–78

[8] K.S. Smith, An analytic nodal method for solving the two-group, multidimensional, static and transient neutron diffusion equations, Ph. D. thesis, Massachusetts Institute of Technology, 1979 | Zbl

[9] R.D. Lawrence, “Progress in nodal methods for the solution of the neutron diffusion and transport equations”, Progress in Nuclear Energy, 17:3 (1986), 271–301 | DOI

[10] L.M. Grossman, J.-P. Hennart, “Nodal diffusion methods for space-time neutron kinetics”, Progress in Nuclear Energy, 49:3 (2007), 181–216 | DOI

[11] S.C. Brenner, R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 2008 | MR | Zbl

[12] A. Quarteroni, A. Valli, Numerical Approximation of Partial Differential Equations, Springer, 2008 | MR | Zbl

[13] L.A. Hageman, D.M. Young, Applied Iterative Methods, Academic Press, New York, 1981 | Zbl

[14] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial Mathematics, 2003 | MR | Zbl

[15] U.M. Ascher, Numerical Methods for Evolutionary Differential Equations, Society for Industrial Mathematics, 2008 | MR | Zbl

[16] R.J. LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations. Steady-State and Time-Dependent Problems, Society for Industrial Mathematics, 2007 | MR | Zbl

[17] W.H. Hundsdorfer, J.G. Verwer, Numerical Solution of Time-dependent Advection-diffusion reaction Equations, Springer Verlag, 2003 | MR | Zbl

[18] J.C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, 2008 | MR | Zbl

[19] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer Verlag, 2010 | MR | Zbl

[20] H.P. Chou, J.R. Lu, M.B. Chang, “A three-dimensional space-time model and its use in pressurized water reactor rod ejection analyses”, Nuclear Technology, 90:2 (1990), 142–154

[21] M. Dahmani, A.M. Baudron, J.J. Lautard, L. Erradi, “A 3D nodal mixed dual method for nuclear reactor kinetics with improved quasistatic model and a semi-implicit scheme to solve the precursor equations”, Annals of Nuclear Energy, 28:8 (2001), 805–824 | DOI

[22] H.L. Dodds, “Accuracy of the quasistatic method for two-dimensional thermal reactor transients with feedback”, Nuclear Science and Engineering, 59:3 (1976), 271–276

[23] S. Goluoglu, H.L. Dodds, “A time-dependent, three-dimensional neutron transport methodology”, Nuclear Science and Engineering, 139:3 (2001), 248–261

[24] G.I. Bell, S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold Company, 1970

[25] R.S. Modak, A. Gupta, “A scheme for the evaluation of dominant time-eigenvalues of a nuclear reactor”, Annals of Nuclear Energy, 34:3 (2007), 213–221 | DOI

[26] G. Verdu, D. Ginestar, J. Roman, V. Vidal, “3D alpha modes of a nuclear power reactor”, Journal of Nuclear Science and Technology, 47:5 (2010), 501–514 | DOI

[27] A. Luikov, Analytical Heat Diffusion Theory, Academic Press, 1968

[28] A.A. Samarskii, P.N. Vabishchevich, Computational Heat Transfer, Wiley, 1996

[29] A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York, 2001 | MR | Zbl

[30] A.A. Samarskii, A.V. Gulin, Ustoichivost raznostnykh skhem, Nauka, M., 1973

[31] C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, NJ, 1971 | MR | Zbl

[32] A. Logg, K.A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Springer, 2012 | MR | Zbl

[33] C. Campos, J. Roman, E. Romero, A. Tomas, SLEPc Users Manual, 2013

[34] Y.A. Chao, Y.A. Shatilla, “Conformal mapping and hexagonal nodal methods-II: Implementation in the ANC-H Code”, Nuclear Science and Engineering, 121 (1995), 210–225