Development and research of the mathematical model of a vehicle with semitrailer planar motion
Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 29-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

The movement of a road train, consisting of a biaxial tractor car and triaxial semitrailer, which are considered solid bodies, on a horizontal non-deformable ground has been considered. On the basis of the Lagrange’s equations of the second kind the nonlinear mathematical model of its plane motion, which uses as generalized coordinates the position of the fifth-wheel coupling and rotating angles of the tractor and semitrailer body, has been developed. The analysis and linearization of a formed system of equations has been held. The linear mathematical model, describing small lateral displacements and rotations of the road train elements while moving on a high longitudinal speed, with small jackknifing angle and small rotating angle of steer wheels, has been obtained. Through the equivalent conversions of an obtained system of equations the state-space linear model of a road train lateral motion has been formed. A comparative analysis of linear and nonlinear model usage has been delivered to describe a road train motion while passing standard maneuvers. It is shown that, if the limitations are complied, the results of nonlinear and linear model usage are quite close to each other and sufficiently good agree with the results of field tests. The developed model, unlike the already known ones, is fairly simple, linear. Further it could be used for an analytical synthesis of control laws for a road train lateral component of motion.
Keywords: road train, planar motion, Lagrange’s equations of second kind, nonlinear model, lateral motion, linear model, analysis.
@article{MM_2017_29_7_a2,
     author = {V. G. Volkov and D. N. Demyanov and V. S. Karabtsev},
     title = {Development and research of the mathematical model of a vehicle with semitrailer planar motion},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--43},
     publisher = {mathdoc},
     volume = {29},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a2/}
}
TY  - JOUR
AU  - V. G. Volkov
AU  - D. N. Demyanov
AU  - V. S. Karabtsev
TI  - Development and research of the mathematical model of a vehicle with semitrailer planar motion
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 29
EP  - 43
VL  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a2/
LA  - ru
ID  - MM_2017_29_7_a2
ER  - 
%0 Journal Article
%A V. G. Volkov
%A D. N. Demyanov
%A V. S. Karabtsev
%T Development and research of the mathematical model of a vehicle with semitrailer planar motion
%J Matematičeskoe modelirovanie
%D 2017
%P 29-43
%V 29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_7_a2/
%G ru
%F MM_2017_29_7_a2
V. G. Volkov; D. N. Demyanov; V. S. Karabtsev. Development and research of the mathematical model of a vehicle with semitrailer planar motion. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 29-43. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a2/

[1] G.A. Smirnov, Teoriia dvizheniia kolesnykh mashin, Mashinostroenie, M., 1990, 352 pp.

[2] Bosch Automotive Handbook, 5th Edition, Robert Bosch GmbH, Stuttgart, 2000, 960 pp.

[3] I.V. Novozhilov, I.S. Pavlov, “An approximate mathematical model of a wheeled vehicle”, Mechanics of Solids, 1997, no. 2, 164–171 | Zbl

[4] V.A. Gorelov. S.A. Tropin, “Matematicheskaia model krivolineinogo dvizheniia avtopoezda po nedeformiruemomu opornomu osnovaniiu”, Zhurnal Avtomobilnyh Inzhenerov, 2011, no. 5, 18–22

[5] L. Gagnon, M.J. Richard, G. Dore, “A multibody dynamics model to assess the impact of road unevenness on the efficiency of a semitrailer truck”, International Journal of Vehicle Systems Modelling and Testing, 10:1 (2015), 1–28 | DOI | MR

[6] Z. Liu, K. Hu, K.-W. Chung, “Nonlinear analysis of a closed-loop tractor-semitrailer vehicle system with time delay”, Mechanical Systems and Signal Processing, 76–77 (2016), 696–711 | DOI

[7] I.S. Pavlov, Matematicheskoe modelirovanie prostranstvennogo dvizheniia avtomobilia, avtoreferat dissertatsii ... kand. fiz.-mat. nauk, MGU im. M.V. Lomonosova, M., 1998

[8] K.A. Pupkov, N.D. Egupov (red.), Metody klassicheskoi i sovremennoi teorii avtomaticheskogo upravleniia, uchebnik v 5 tt., v. 3, Sintez reguliatorov sistem avtomaticheskogo upravleniia, Izdatelstvo MGTU im. N.E. Baumana, M., 2004, 616 pp.

[9] I.V. Novozhilov, “Approximate mathematical modeling of motions”, Journal of Mathematical Sciences, 146:3 (2007), 5800–5802 | DOI | MR | Zbl

[10] N.N. Buhgolts, Osnovnoi kurs teoreticheskoi mehaniki, v. II, Fizmatlit, M., 1972, 332 pp.

[11] K.B. Alekseev, A.A. Malyavin, K.A. Palaguta, “Sravnitelnyi analiz prediktornogo i nechetkogo upravleniia dvizheniem avtomobilia”, Mehatronika, avtomatizatsiia, upravlenie, 2009, no. 5, 36–46