Numerical simulation of evolution of a gas bubble in a liquid near a wall
Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 15-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical technique based on application of the boundary element method is proposed for studying the axially symmetric dynamics of a bubble in a liquid near a solid wall. It is assumed that the fluid is ideal incompressible, its flow is potential. The process of expansion and contraction of a spheroidal bubble is considered, including the toroidal phase of its movement. The velocity and pressure fields in the liquid surrounding the bubble are evaluated along with the shape of the bubble surface and the velocity of its displacement. The numerical convergence of the algorithm with increasing the number of the boundary elements and refining the time step is shown, a comparison with experimental and numerical results of other authors are performed. The capabilities of the technique are illustrated by solving a problem of collapse, in water, of a spheroidal bubble located a short distance from the wall.
Keywords: cavitation bubble, potential for fluid, boundary element method.
@article{MM_2017_29_7_a1,
     author = {A. A. Aganin and L. A. Kosolapova and V. G. Malakhov},
     title = {Numerical simulation of evolution of a gas bubble in a liquid near a wall},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {15--28},
     publisher = {mathdoc},
     volume = {29},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a1/}
}
TY  - JOUR
AU  - A. A. Aganin
AU  - L. A. Kosolapova
AU  - V. G. Malakhov
TI  - Numerical simulation of evolution of a gas bubble in a liquid near a wall
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 15
EP  - 28
VL  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a1/
LA  - ru
ID  - MM_2017_29_7_a1
ER  - 
%0 Journal Article
%A A. A. Aganin
%A L. A. Kosolapova
%A V. G. Malakhov
%T Numerical simulation of evolution of a gas bubble in a liquid near a wall
%J Matematičeskoe modelirovanie
%D 2017
%P 15-28
%V 29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_7_a1/
%G ru
%F MM_2017_29_7_a1
A. A. Aganin; L. A. Kosolapova; V. G. Malakhov. Numerical simulation of evolution of a gas bubble in a liquid near a wall. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 15-28. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a1/

[1] Kedrinskii V. K., Hydrodynamics of Explosion: Experiments and Models, Springer, 2005, 362 pp.

[2] Plesset M. S., Chapman R. B., “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary”, J. Fluid Mech., 47:2 (1971), 283–290 | DOI

[3] Kornfeld M., Suvorov L., “On the Destructive Action of Cavitation”, J. Appl. Phys., 15 (1944), 495–506 | DOI

[4] Popinet S., Zaleski S., “Bubble collapse near a solid boundary: A numerical study of the influence of viscosity”, J. Fluid Mech., 464 (2002), 137–163 | DOI | Zbl

[5] Johnsen E., Colonius T., “Numerical simulations of non-spherical bubble collapse”, J. Fluid Mech., 629 (2009), 231–262 | DOI | MR | Zbl

[6] Turangan C. K., Ball G. J., “A Free-Lagrange Simulation of Cavitation Bubble collapse near a Rigid Boundary”, The 23-rd International Symposium on Shock Waves (Fort-Worth TX, USA, July 2001), 793–799

[7] Voinov O. V., Voinov V. V., “Chislennyi metod rascheta nestatsionarnykh dvizhenii idealnoi neszhimaemoi zhidkosti so svobodnymi poverkhnostiami”, DAN SSSR, 221:3 (1975), 559–562 | Zbl

[8] Voinov O. V., Voinov V. V., “O skheme zakhlopyvaniia kavitatsionnogo puzyrka okolo stenki i obrazovaniia kumuliativnoi strui”, DAN SSSR, 227:1 (1976), 63–66

[9] Blake J. R., Taib B. B., Doherty G., “Transient cavities near boundaries”, J. Fluid Mech., 170 (1986), 479–497 | DOI | Zbl

[10] Wang Q. X., “The Evolution of a Gas Bubble Near an Inclined Wall”, Theoret. Comput. Fluid Dynamics, 12 (1998), 29–51 | DOI | Zbl

[11] Afanasev K. E., Grigoreva I. V., “Chislennoe modelirovanie dinamiki prostranstvennykh parogazovykh puzyrei”, Vychislitelnye tekhnologii, 11, specialnyj vypusk (2006), 4–25

[12] Best J. P., “The formation of toroidal bubbles upon the collapse of transient cavities”, J. Fluid Mech., 251 (1993), 79–107 | DOI | Zbl

[13] Pearson A., Blake J. R., Otto S. R., “Jets in bubbles”, J. Engineering Mathematics, 48 (2004), 391–412 | DOI | MR | Zbl

[14] Zhang S., Duncan J. H., Chahine G. L., “The final stage of the collapse of a cavitation bubble near a rigid wall”, J. Fluid Mech., 257 (1993), 147–181 | DOI | Zbl

[15] Wang Q. X., Yeo K. S., Khoo B. C., Lam K. Y., “Nonlinear interaction between gas bubble and free surface”, Computers and Fluids, 25:7 (1996), 607–628 | DOI | Zbl

[16] Lee M., Klaseboer E., Khoo B. C., “On the boundary integral method for the rebounding bubble”, J. Fluid Mech., 570 (2007), 407–429 | DOI | MR | Zbl

[17] Best J. P., “The rebound of toroidal bubbles”, Bubble Dynamics and Interface Phenomena, Kluwer Academic Publishers, Dordrecht, 1994, 405–412 | DOI

[18] Zhang Z. Y., Zhang H. S., “Surface tension effects on the behavior of a cavity growing, collapsing and rebounding near a rigid wall”, Physical Review E, 70 (2004), 056310 | DOI

[19] Aganin A. A., Ilgamov M. A., Kosolapova L. A., Malakhov V. G., “Skhlopyvanie kavitatsionnogo puzyrka v zhidkosti vblizi tverdoi stenki”, Vestnik Bashkirskogo universiteta, 18:1 (2013), 15–21 | Zbl

[20] Aganin A. A., Ilgamov M. A., Kosolapova L. A., Malakhov V. G., “Dynamics of the cavitation bubble near a solid wall”, Thermophysics and Aeromechanics, 23:2 (2016), 211–220 | DOI | MR

[21] Kosolapova L. A., Malakhov V. G., “Chislennoe issledovanie dinamiki sferoidalnykh puzyrkov vblizi zhestkoi stenki”, Setochnye metody dlia kraevykh zadach i prilozheniia, Materialy X mezhdunar. konf. (Kazan, 24–29 sentiabria 2014 g.), Izd-vo Kazan. un-ta, Kazan, 2014, 429–434

[22] Brebbia C. A., Telles J. C. F., Wrobel L. C., Boundary element techniques: Theory and Applications in Engineering, Springer, 1984, 464 pp. | MR | MR | Zbl

[23] Best J. P., Kucera A., “A numerical investigation of non-spherical rebounding bubbles”, J. Fluid Mech., 245 (1992), 137–154 | DOI | Zbl

[24] Best J. P., The Dynamics of Underwater Explosions, PhD thesis, The University of Wollongong, Australia, 1991, 257 pp.

[25] Tong R. P., Schiffers W. P., Shaw S. J., Blake J. R., Emmony D. C., “The role of ‘splashing’ in the collapse of a laser-generated cavity near a rigid boundary”, J. Fluid Mech., 380 (1999), 339–361 | DOI | Zbl

[26] Philipp A., Lauterborn W., “Cavitation erosion by single laser-produced bubbles”, J. Fluid Mech., 361 (1998), 75–116 | DOI | Zbl

[27] Tomita Y., Shima A., “Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse”, J. Fluid Mech., 169 (1986), 535–564 | DOI