Mots-clés : divergent scheme
@article{MM_2017_29_7_a0,
author = {V. A. Gordin and E. A. Tsymbalov},
title = {4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {3--14},
year = {2017},
volume = {29},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/}
}
TY - JOUR
AU - V. A. Gordin
AU - E. A. Tsymbalov
TI - 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients
JO - Matematičeskoe modelirovanie
PY - 2017
SP - 3
EP - 14
VL - 29
IS - 7
UR - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/
LA - ru
ID - MM_2017_29_7_a0
ER -
V. A. Gordin; E. A. Tsymbalov. 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/
[1] Gordin V. A., Kak eto poschitat?, MTsNMO, M., 2005, 279 pp.; 2013, 733 с.
[2] Gordin V. A., Matematika, kompiuter, prognoz pogody i drugie stsenarii matematicheskoi fiziki, Fizmatlit, M., 2010; 2013, 733 pp.
[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966; МГУ, 2004, 798 с.; Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Dover Pubns, 1990, 800 с. | MR
[4] Samarskii A. A., The theory of difference schemes, Pure and Applied Mathematics, 240, CRC Press, 2001, 788 pp. ; Интеллект, 2008, 504 с. | MR
[5] Fedorenko R. P., Lektsii po vychislitelnoi fizike, MFTI, M., 1994 ; Intellekt, 2008, 504 pp. | Zbl
[6] Fedoryuk M. V., Asymptotic analysis: linear ordinary differential equations, Springer Science Business Media, 2012 | MR
[7] Abramov A. A., “O granichnykh usloviiakh v singuliarnoi tochke sistemy obyknovennykh differentsialnykh uravnenii”, Zhurnal vychilslitelnoi matematiki i matematicheskoi fiziki, 11:1 (1971), 275–278 | Zbl
[8] Gordin V. A., Tsymbalov E. A., “Compact differential schemes for the diffusion and Schrodinger equations. Approximation, stability, convergence, effectiveness, monotony”, Journal of Computational Mathematics, 32:2.2 (2014), 348–370 | DOI | MR | Zbl