4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients
Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present compact difference scheme on three-point stencil for unknown function. The scheme approximates linear second order differential equation with variable smooth coefficient. Our numerical experiments confirmed 4-th accuracy order of solutions of the difference scheme and of eigenvalues’ approximation for the boundary problem. The difference operator is almost self-conjugate, and its spectrum is real. The Richardson extrapolation method improves the accuracy order.
Keywords: compact difference scheme, test functions, self-conjugacy.
Mots-clés : divergent scheme
@article{MM_2017_29_7_a0,
     author = {V. A. Gordin and E. A. Tsymbalov},
     title = {4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {29},
     number = {7},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/}
}
TY  - JOUR
AU  - V. A. Gordin
AU  - E. A. Tsymbalov
TI  - 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 3
EP  - 14
VL  - 29
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/
LA  - ru
ID  - MM_2017_29_7_a0
ER  - 
%0 Journal Article
%A V. A. Gordin
%A E. A. Tsymbalov
%T 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients
%J Matematičeskoe modelirovanie
%D 2017
%P 3-14
%V 29
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/
%G ru
%F MM_2017_29_7_a0
V. A. Gordin; E. A. Tsymbalov. 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/

[1] Gordin V. A., Kak eto poschitat?, MTsNMO, M., 2005, 279 pp.; 2013, 733 с.

[2] Gordin V. A., Matematika, kompiuter, prognoz pogody i drugie stsenarii matematicheskoi fiziki, Fizmatlit, M., 2010; 2013, 733 pp.

[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966; МГУ, 2004, 798 с.; Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Dover Pubns, 1990, 800 с. | MR

[4] Samarskii A. A., The theory of difference schemes, Pure and Applied Mathematics, 240, CRC Press, 2001, 788 pp. ; Интеллект, 2008, 504 с. | MR

[5] Fedorenko R. P., Lektsii po vychislitelnoi fizike, MFTI, M., 1994 ; Intellekt, 2008, 504 pp. | Zbl

[6] Fedoryuk M. V., Asymptotic analysis: linear ordinary differential equations, Springer Science Business Media, 2012 | MR

[7] Abramov A. A., “O granichnykh usloviiakh v singuliarnoi tochke sistemy obyknovennykh differentsialnykh uravnenii”, Zhurnal vychilslitelnoi matematiki i matematicheskoi fiziki, 11:1 (1971), 275–278 | Zbl

[8] Gordin V. A., Tsymbalov E. A., “Compact differential schemes for the diffusion and Schrodinger equations. Approximation, stability, convergence, effectiveness, monotony”, Journal of Computational Mathematics, 32:2.2 (2014), 348–370 | DOI | MR | Zbl