Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_7_a0, author = {V. A. Gordin and E. A. Tsymbalov}, title = {4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--14}, publisher = {mathdoc}, volume = {29}, number = {7}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/} }
TY - JOUR AU - V. A. Gordin AU - E. A. Tsymbalov TI - 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients JO - Matematičeskoe modelirovanie PY - 2017 SP - 3 EP - 14 VL - 29 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/ LA - ru ID - MM_2017_29_7_a0 ER -
%0 Journal Article %A V. A. Gordin %A E. A. Tsymbalov %T 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients %J Matematičeskoe modelirovanie %D 2017 %P 3-14 %V 29 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/ %G ru %F MM_2017_29_7_a0
V. A. Gordin; E. A. Tsymbalov. 4$^{\mathrm{th}}$ order difference scheme for the differential equation with variable coefficients. Matematičeskoe modelirovanie, Tome 29 (2017) no. 7, pp. 3-14. http://geodesic.mathdoc.fr/item/MM_2017_29_7_a0/
[1] Gordin V. A., Kak eto poschitat?, MTsNMO, M., 2005, 279 pp.; 2013, 733 с.
[2] Gordin V. A., Matematika, kompiuter, prognoz pogody i drugie stsenarii matematicheskoi fiziki, Fizmatlit, M., 2010; 2013, 733 pp.
[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966; МГУ, 2004, 798 с.; Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Dover Pubns, 1990, 800 с. | MR
[4] Samarskii A. A., The theory of difference schemes, Pure and Applied Mathematics, 240, CRC Press, 2001, 788 pp. ; Интеллект, 2008, 504 с. | MR
[5] Fedorenko R. P., Lektsii po vychislitelnoi fizike, MFTI, M., 1994 ; Intellekt, 2008, 504 pp. | Zbl
[6] Fedoryuk M. V., Asymptotic analysis: linear ordinary differential equations, Springer Science Business Media, 2012 | MR
[7] Abramov A. A., “O granichnykh usloviiakh v singuliarnoi tochke sistemy obyknovennykh differentsialnykh uravnenii”, Zhurnal vychilslitelnoi matematiki i matematicheskoi fiziki, 11:1 (1971), 275–278 | Zbl
[8] Gordin V. A., Tsymbalov E. A., “Compact differential schemes for the diffusion and Schrodinger equations. Approximation, stability, convergence, effectiveness, monotony”, Journal of Computational Mathematics, 32:2.2 (2014), 348–370 | DOI | MR | Zbl