Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_6_a7, author = {A. V. Karakin and M. M. Ramazanov and V. E. Borisov}, title = {The incomplete coupling problem of hydraulic fracturing equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {115--134}, publisher = {mathdoc}, volume = {29}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a7/} }
TY - JOUR AU - A. V. Karakin AU - M. M. Ramazanov AU - V. E. Borisov TI - The incomplete coupling problem of hydraulic fracturing equations JO - Matematičeskoe modelirovanie PY - 2017 SP - 115 EP - 134 VL - 29 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_6_a7/ LA - ru ID - MM_2017_29_6_a7 ER -
A. V. Karakin; M. M. Ramazanov; V. E. Borisov. The incomplete coupling problem of hydraulic fracturing equations. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 115-134. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a7/
[1] E. Detournay, “Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks”, Intern. J. of Geomechanics, ASCE, 35 (2004), 35–45
[2] Y. Fan, M.J. Economides, Fracture Dimensions in Frack Stimulation, Paper SPE 30469 Presented at the 1995 Annual technical Conference and Exhibition (Dallas, TX, Oct. 22–25, 1995)
[3] J.I. Adachi, E. Detournay, “Self-similar solution of a plane-strain fracture driven by a power-law fluid”, Int. J. Numer. Anal. Meth. Geomech., 26 (2002), 579–604
[4] J.I. Adachi, E. Detournay, “Plane strain propagation of a hydraulic fracture in a permeable rock”, Engng. Fract. Mech., 75 (2008), 4666–4694
[5] J.I. Adachi, E. Detournay, A.P. Peirce, “Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers”, International Journal of Rock Mechanics Mining Sciences, 47 (2010), 625–639
[6] D. Garagash, “Propagation of a plane-strain hydraulic fracture with a fluid lag: Early-time solution”, International Journal of Solids and Structures, 43 (2006), 5811–5835
[7] D. Garagash, “Plane-strain propagation of a fluid-driven fracture during injection and shut-in: Asymptotics of large toughness”, Engng. Fract. Mech., 73 (2006), 456–481
[8] E. Detournay, D.I. Garagash, “The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid”, J. Fluid Mech., 494 (2003), 1–32
[9] A.P. Bunger, E. Detournay, D.I. Garagash, “Toughness-dominated hydraulic fracture with leak-off”, Int. J. Fract., 134:2 (2005), 175–190
[10] A.V. Karakin, “Printsip nepolnoj svyazannosti v modelyah porouprugih sred”, Matematicheskoe modelirovanie, 18:2 (2006), 24–42
[11] M.A. Biot, “Thermoelasticity and irreversible thermodynamics”, J. Appl. Phys., 27 (1956), 240–253
[12] M.A. Biot, “General solutions of the equations of elasticity and consolidation for a porous material”, J. Appl. Mech., 1956; Trans. ASME, 78, 91–96
[13] E. Detourney, A.H.-D. Cheng, Fundamental of Poroelasticity, Comprehensive Rock Engineering. Principle, Practice and Projects, 5, eds. J. A. Hudson, E.T. Brown, C. Fairhurst, E. Hoek, Pergamon Press, New York, 1993
[14] A.V. Karakin, Yu.A. Kuryanov, N.I. Pavlenkova, Razlomy treshchinovatye zony i volnovody v verhnih sloyah zemnoy obolochki, VNIIgeosistem, M., 2003, 228 pp.
[15] N.I. Muskhelishvili, Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti, Nauka, M., 1966, 707 pp.
[16] A.V. Karakin, “Hydraulic fracturing in the upper crust”, Izvestiya, Physics of the Solid Earth, 42:8 (2006), 652–667
[17] L.I. Sedov, Mechanics of Continuous Media, in 2 vol., 4th ed., World Scientific Publishing, 1997
[18] A.A. Kadik et al., “Simulating crystal-magma separation in a centrifuge”, Geochemistry international, 26:8 (1989), 39–47
[19] A.V. Karakin, P.A. Pokatashkin, “Mechanism of density inversion formation in partially molten rocks”, Geochemistry international, 52:1 (2014), 22–32