The incomplete coupling problem of hydraulic fracturing equations
Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 115-134.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a problem of evolution of the state of poroelastic media coupled with slow motions of the viscous fluid inside hydraulic fracture in 3D setting. The fluid flow is induced by injection of fluid into the fracture. The fluid flow is described using Reynolds lubrication equations. External poroelasric media is governed by Biot poroelasticity equations. We analyze interplay of the different geomechanical processes in the media and the fracture using asymptotic framework. As a result, it is shown that the complete coupled problem can be reduced to the three one-way coupled problems which can be solved sequentially. The approach allows to analyze certain process related to the hydraulic fracture analysis as well as some other ones. At the same time the approach provides theoretical background for construction of new physically-based iterative and preconditioning techniques suitable for solution of the complete coupled problem.
Keywords: hydraulic fracture problem, poroelastic medium, equilibrium crack, incomplete coupling principle.
@article{MM_2017_29_6_a7,
     author = {A. V. Karakin and M. M. Ramazanov and V. E. Borisov},
     title = {The incomplete coupling problem of hydraulic fracturing equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {115--134},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a7/}
}
TY  - JOUR
AU  - A. V. Karakin
AU  - M. M. Ramazanov
AU  - V. E. Borisov
TI  - The incomplete coupling problem of hydraulic fracturing equations
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 115
EP  - 134
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_6_a7/
LA  - ru
ID  - MM_2017_29_6_a7
ER  - 
%0 Journal Article
%A A. V. Karakin
%A M. M. Ramazanov
%A V. E. Borisov
%T The incomplete coupling problem of hydraulic fracturing equations
%J Matematičeskoe modelirovanie
%D 2017
%P 115-134
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_6_a7/
%G ru
%F MM_2017_29_6_a7
A. V. Karakin; M. M. Ramazanov; V. E. Borisov. The incomplete coupling problem of hydraulic fracturing equations. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 115-134. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a7/

[1] E. Detournay, “Propagation Regimes of Fluid-Driven Fractures in Impermeable Rocks”, Intern. J. of Geomechanics, ASCE, 35 (2004), 35–45

[2] Y. Fan, M.J. Economides, Fracture Dimensions in Frack Stimulation, Paper SPE 30469 Presented at the 1995 Annual technical Conference and Exhibition (Dallas, TX, Oct. 22–25, 1995)

[3] J.I. Adachi, E. Detournay, “Self-similar solution of a plane-strain fracture driven by a power-law fluid”, Int. J. Numer. Anal. Meth. Geomech., 26 (2002), 579–604

[4] J.I. Adachi, E. Detournay, “Plane strain propagation of a hydraulic fracture in a permeable rock”, Engng. Fract. Mech., 75 (2008), 4666–4694

[5] J.I. Adachi, E. Detournay, A.P. Peirce, “Analysis of the classical pseudo-3D model for hydraulic fracture with equilibrium height growth across stress barriers”, International Journal of Rock Mechanics Mining Sciences, 47 (2010), 625–639

[6] D. Garagash, “Propagation of a plane-strain hydraulic fracture with a fluid lag: Early-time solution”, International Journal of Solids and Structures, 43 (2006), 5811–5835

[7] D. Garagash, “Plane-strain propagation of a fluid-driven fracture during injection and shut-in: Asymptotics of large toughness”, Engng. Fract. Mech., 73 (2006), 456–481

[8] E. Detournay, D.I. Garagash, “The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid”, J. Fluid Mech., 494 (2003), 1–32

[9] A.P. Bunger, E. Detournay, D.I. Garagash, “Toughness-dominated hydraulic fracture with leak-off”, Int. J. Fract., 134:2 (2005), 175–190

[10] A.V. Karakin, “Printsip nepolnoj svyazannosti v modelyah porouprugih sred”, Matematicheskoe modelirovanie, 18:2 (2006), 24–42

[11] M.A. Biot, “Thermoelasticity and irreversible thermodynamics”, J. Appl. Phys., 27 (1956), 240–253

[12] M.A. Biot, “General solutions of the equations of elasticity and consolidation for a porous material”, J. Appl. Mech., 1956; Trans. ASME, 78, 91–96

[13] E. Detourney, A.H.-D. Cheng, Fundamental of Poroelasticity, Comprehensive Rock Engineering. Principle, Practice and Projects, 5, eds. J. A. Hudson, E.T. Brown, C. Fairhurst, E. Hoek, Pergamon Press, New York, 1993

[14] A.V. Karakin, Yu.A. Kuryanov, N.I. Pavlenkova, Razlomy treshchinovatye zony i volnovody v verhnih sloyah zemnoy obolochki, VNIIgeosistem, M., 2003, 228 pp.

[15] N.I. Muskhelishvili, Nekotorye osnovnye zadachi matematicheskoy teorii uprugosti, Nauka, M., 1966, 707 pp.

[16] A.V. Karakin, “Hydraulic fracturing in the upper crust”, Izvestiya, Physics of the Solid Earth, 42:8 (2006), 652–667

[17] L.I. Sedov, Mechanics of Continuous Media, in 2 vol., 4th ed., World Scientific Publishing, 1997

[18] A.A. Kadik et al., “Simulating crystal-magma separation in a centrifuge”, Geochemistry international, 26:8 (1989), 39–47

[19] A.V. Karakin, P.A. Pokatashkin, “Mechanism of density inversion formation in partially molten rocks”, Geochemistry international, 52:1 (2014), 22–32