Near field formation via colloid particles in the problems of silicon substrates nanoprocessing
Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 103-114.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical model for analysis of the near field intensity distribution in the problems of light scattering by particles on the substrate has been developed on the basis of the Discrete Sources Method. The influence of the size and material of particles and the refractive index of the ambient medium on the distribution of field intensity inside the substrate near the particle has been examined.
Keywords: light scattering, particles inside liquid on a substrate, Discrete Sources Method, numerical scheme.
@article{MM_2017_29_6_a6,
     author = {Yu. A. Eremin and A. G. Sveshnikov},
     title = {Near field formation via colloid particles in the problems of silicon substrates nanoprocessing},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {103--114},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a6/}
}
TY  - JOUR
AU  - Yu. A. Eremin
AU  - A. G. Sveshnikov
TI  - Near field formation via colloid particles in the problems of silicon substrates nanoprocessing
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 103
EP  - 114
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_6_a6/
LA  - ru
ID  - MM_2017_29_6_a6
ER  - 
%0 Journal Article
%A Yu. A. Eremin
%A A. G. Sveshnikov
%T Near field formation via colloid particles in the problems of silicon substrates nanoprocessing
%J Matematičeskoe modelirovanie
%D 2017
%P 103-114
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_6_a6/
%G ru
%F MM_2017_29_6_a6
Yu. A. Eremin; A. G. Sveshnikov. Near field formation via colloid particles in the problems of silicon substrates nanoprocessing. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 103-114. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a6/

[1] Dhaliwal R. S., Enichen W. A., Gordon M. S., et al., “PREVAIL: Electron projection technology approach for next-generation lithography”, IBM J. Res. Dev., 45 (2001), 615–638

[2] Piner R. D., Zhu J., Xu F., et al., ““Dip-Pen” nanolithography”, Science, 283 (1999), 661–663

[3] Georgiev D. G., Baird R. J., Avrutsky I., et al., “Controllable excimer-laser fabrication of conical nano-tips on silicon thin films”, Appl. Phys. Lett., 84 (2004), 4881–4883

[4] Piglmayer K., Denk R., Bauerle D., “Laser-induced surface patterning by means of microspheres”, Appl. Phys. Lett., 80 (2002), 4693–4695

[5] Wang Z. B., Guo W., Pena A., et al., “Laser micro/nano fabrication in glass with tunable-focus particle lens array”, Opt. Express, 16 (2008), 19706–19711

[6] Muenzer H. J., Mosbacher M., Bertsch M., et al., “Local field enhancement effects for nanostructuring of surfaces”, J. Microscopy, 202 (2001), 129–135

[7] Kuehler P., Puerto D., Mosbacher M., et al., “Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle”, Beilstein J. Nanotechnol., 4 (2013), 501–509

[8] Ulmeanu M., Petkov P., Hirshy H., Brousseau E., “Formation of ordered arrays of Si and GaAs nanostructures by single-shot laser irradiation in near-field at the solid/liquid interface”, Mater. Res. Express, 1 (2014), N015030

[9] Moening J. P., Georgiev D. G., “Formation of conical silicon tips with nanoscale sharpness by localized laser irradiation”, J. Appl. Phys., 107 (2010), N014307

[10] Piparia R., Rothe E. W., Baird R. J., “Nanobumps on silicon created with polystyrene spheres and 248 or 308nm laser pulses”, Appl. Phys. Lett., 89 (2006), N223113

[11] Ulmeanu M., Grubb M. P., Jipa F., Quignon B., Ashfold M. N. R., “3-D patterning of silicon by laserinitiated, liquid-assisted colloidal (LILAC) lithography”, J. Colloid and Interface Science, 447 (2015), 258–262

[12] Fan X., Zheng W., Singh D. J., “Light scattering and surface plasmons on small spherical particles (Review)”, Light: Sci. Appl., 3 (2014), e179

[13] Terakawa M., Obara M., “Ultrafast near- and far-field nanoablation patterning”, SPIE Newsroom (April 2012)

[14] Taflove A., Hagness S., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, 2005

[15] Hafner Ch., “Boundary methods for optical nano structures”, J. Phys. Stat. Sol. B, 244 (2007), 3435–3447

[16] Gallinet B., Butet J., Martin O. J. F., “Numerical methods for nanophotonics: standard problems and future challenges”, Laser Photonics. Rev., 9:6 (2015), 577–607

[17] Grishina N. V., Eremin Iu.A., Sveshnikov A. G., “New Concept of the Discrete Sources Method in Electromagnetic Scattering Problems”, Mathematical Models and Computer Simulations, 8:2 (2016), 175–182

[18] Eremin Iu.A., Orlov N. V., Sveshnikov A. G., “Analiz matematicheskoi modeli zagriaznenii silikonovykh vafel na osnove metoda diskretnykh istochnikov”, Matem. modelirovanie, 8:10 (1996), 113–127

[19] Born M., Wolf E., Principles of optics, Oxford–London–Edinburg, 1968

[20] Eremin Iu.A., Sveshnikov A. G., “Metod Diskretnykh istochnikov v zadachakh rasseianiia elektromagnitnykh voln”, Uspekhi sovremennoi radioelektroniki, 2003, no. 10, 3–40

[21] Grishina N. V., Eremin N. V., Sveshnikov A. G., “Analysis of scattering properties of embedded particles by applying the discrete sources method”, Computational Mathematics and Mathematical Physics, 52:9 (2012), 1295–1303