Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_6_a4, author = {V. A. Prokofyev}, title = {Pressure correction method for multi-layer open flow model and wave problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {61--88}, publisher = {mathdoc}, volume = {29}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a4/} }
V. A. Prokofyev. Pressure correction method for multi-layer open flow model and wave problems. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 61-88. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a4/
[1] E. Audusse, M-O. Bristeau, B. Perthame, J. Sainte-Marie, “A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation”, ESAIM: M2AN, 45:1 (2011), 169–200
[2] E. Audusse, M-O. Bristeau, M. Pelanti, J. Sainte-Marie, “Approximation of the hydrostatic Navier-Stokes system for density stratified flows by a multi-layer model. Kinetic interpretation and numeral solution”, Journal of Computational Physics, 230:9 (2011), 3453–3478
[3] V.A. Prokofyev, “Application of unified 3D hydro-thermal model of a reservoir for estimation of HPP construction influence on environment”, ICOLD, Proceedings of the International Symposium on Dams on changing word, sect. 5 (Kyoto, 2012), 69–74
[4] G.S. Stelling, M. Zijlema, “An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation”, Int. J. Numerical Methods in Fluids, 43 (2003), 1–23
[5] G. Stelling, M. Zijlema, “Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure”, Coastal Engineering, 55 (2008), 780–790
[6] M. Zijlema, G.S. Stelling, “Further experiences with computing non-hydrostatic free-surface flows involving water waves”, Int. J. Numerical Methods in Fluids, 48 (2005), 169–197
[7] Y. Yamazaki, Z. Kowalik, K.F. Cheung, “Depth-integrated, non-hydrostatic model for wave breaking and run-up”, Int. J. Numerical Methods in Fluids, 61 (2009), 473–497
[8] P. Badiei, M.M. Namin, A. Ahmadi, “A three-dimensional non-hydrostatic vertical boundary fitted model for free-surface flows”, Int. J. Numerical Methods in Fluids, 56 (2008), 607–627
[9] C.-C. Young, C.-H. Wu, W.-C. Liu, J.-T. Kuo, “A higher-order non-hydrostatic $\sigma$-model for simulating nonlinear refraction-diffraction of water waves”, Coastal Eng., 56 (2009), 919–930
[10] G. Ma, F. Shi, J.T. Kirby, “Shock-capturing non-hydrostatic model for fully dispersive surface wave processes”, Ocean Modeling, 43–44 (2012), 22–35
[11] C. Ai, S. Jin, B. Lv, “A new fully non-hydrostatic 3D free surface flow model for water wave motions”, International Journal for Numerical Methods in Fluids, 66 (2011), 1354–1370
[12] H. Yuan, C.H. Wu, “An implicit three-dimensional fully non-hydrostatic model for free-surface flow”, International Journal for Numerical Methods in Fluids, 46 (2004), 709–733
[13] S. Ullmann, Three-dimensional computation of non-hydrostatic free-surface flows, MSc. Thesis, Delft University of Technology, Delft, 2008
[14] S. Soares Frazao, Y. Zech, “Undular bores and secondary waves - Experiments and hybrid finitevolume modeling”, Journal of Hydraulic Research, 40:1 (2002), 33–43
[15] Z. Lai, C. Chen, G.W. Cowles, R.C. Beardsley, “A nonhydrostatic version of FVCOM: 1. Validation experiments”, J. Geophys. Res., 115 (2010), C11010 | DOI
[16] M. Van Reeuwijk, Efficient simulation of non-hydrostatic free-surface flow. Wave simulation with interpolation of the vertical pressure profile, MSc. Thesis, Delft Univ. of Tech., Delft, 2002
[17] Y. Bai, K.F. Cheung, “Depth-integrated free-surface flow with a two-layer non-hydrostatic formulation”, Int. J. Numer. Methods in Fluids, 2011 | DOI
[18] N.E. Voltsinger, K.A. Klevannyi, E.N. Pelinovskii, Dlinnovolnovaia dinamika pribrezhnoi zony, Gidrometeoizdat, L., 1989, 273 pp.
[19] A.G. Kulikovskii, N.V. Pogorelov, A. Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001, 608 pp.
[20] C.G. Mingham, D.M. Causon, “Calculation of unsteady bore diffraction using a high resolution finite volume method”, Journal of Hydraulic research, 38:1 (2000), 49–56
[21] V.A. Prokofyev, “Two-dimensional horizontal numerical model of open flow over a bed with obstacles”, Water resources, 32:3 (2005), 252–264
[22] A.I. Delis, C.P. Skeels, S.C. Ryrie, “Evolution of some approximate Riemann solvers for transient open channel flows”, Journal of Hydraulic research, 38:3 (2000), 217–231
[23] S. Beji, J.A. Battjes, “Experimental investigation of wave propagation over a bar”, Coastal Engineering, 19 (1993), 151–162
[24] J.C.W. Berkhoff, N. Booy, A.C. Radder, “Verification of numerical wave propagation models for simple harmonic linear water waves”, Coastal Engineering, 1982, no. 6, 255–279
[25] M. Louaked, L. Hanich, “TVD scheme for shallow water equations”, J. of Hydraulic research, 36:3 (1998), 363–378
[26] M.-O. Bristeau, N. Goutal, J. Sainte-Marie, “Numerical simulations of a non-hydrostatic shallow water model”, Computers Fluids, 47:1 (2011), 51–64