Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_6_a2, author = {A. D. Savel'ev}, title = {On the 18th and 22nd order differential schemes for the equations with convective and diffusion terms}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {35--47}, publisher = {mathdoc}, volume = {29}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a2/} }
TY - JOUR AU - A. D. Savel'ev TI - On the 18th and 22nd order differential schemes for the equations with convective and diffusion terms JO - Matematičeskoe modelirovanie PY - 2017 SP - 35 EP - 47 VL - 29 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_6_a2/ LA - ru ID - MM_2017_29_6_a2 ER -
A. D. Savel'ev. On the 18th and 22nd order differential schemes for the equations with convective and diffusion terms. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 35-47. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a2/
[1] A.I. Tolstykh, “A numerical method for the compressible Navier-Stokes equations for a wide range of Reynolds numbers”, Dokl. Akad. Nauk SSSR, 210:1 (1973), 48–51
[2] S.K. Lele, “Compact finite difference schemes with spectral-like resolution”, J. Comp. Phys., 102 (1992), 16–42
[3] M.R. Visbal, D.V. Gaitonde, “On the use of high-order finite-difference schemes on curvilinear and deforming meshes”, J. Comp. Phys., 181 (2002), 155–185
[4] T.H. Pulliam, “Artificial dissipation models for the Euler equations”, AIAA J., 24:12 (1986), 1931–1940
[5] A.D. Savelev, “Sostavnye kompaktnye skhemy vysokogo poryadka dlya modelirovaniya techenii vyazkogo gaza”, ZhVM i MF, 47:8 (2007), 1389–1403
[6] A.D. Savelev, “O strukture vnutrennei dissipatsii sostavnykh kompaktnykh skhem dlya resheniya zadach vychislitelnoi gazovoi dinamiki”, ZhVM i MF, 49:12 (2009), 2232–2246
[7] A.I. Tolstykh, “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322
[8] A.I. Tolstykh, “O multioperatornom metode postroeniya approksimatsii i skhem proizvolno vysokogo poryadka”, ZhVM i MF, 51:1 (2011), 56–73
[9] A.D. Savelev, “O multioperatornom predstavlenii sostavnykh kompaktnykh skhem”, ZhVM i MF, 54:10 (2014), 1580–1593
[10] M.V. Lipavskii, A.I. Tolstykh, E.N. Chigerev, “O chislennom modelirovanii neustoichivosti sdvigovykh sloev na osnove skhemy s multioperatornymi approksimatsiyami devyatogo poryadka”, ZhVM i MF, 53:3 (2013), 417–432
[11] H.C. Yee, N.D. Sandham, M.J. Djomehri, “Low dissipation high order shock-capturing methods using characteristic-based filters”, J. Comp. Phys., 150 (1999), 199–238
[12] A.D. Savelev, “Primenenie raznostnykh operatorov vysokogo poryadka pri chislennom modelirovanii zadach aerodinamiki”, Matematicheskoe modelirovanie, 24:4 (2012), 80–94
[13] F.R. Menter, Zonal two equation $k-\omega$ turbulence models for aerodynamic flows, AIAA Paper 93-2906, 1993, 21 pp.
[14] L.G. Loitsyanskii, Mekhanika zhidkosti i gaza, Nauka, M., 1987, 840 pp.; L.G. Loytsyansky, Mechanics of liquids and gases, Pergamon press, Oxford, 1966, 804 pp.
[15] J.L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries”, AIAA J., 16:7 (1978), 679–687
[16] W.M. Chan, K. Sheriff, T.H. Pulliam, “Instabilities of two-dimensional inviscid compressible vortices”, J. Fluid Mech., 253 (1993), 173–209
[17] P.G. Yakovlev, “Izluchenie zvuka ploskim lokalizovannym vikhrem”, Akusticheskii zhurnal, 58:4 (2012), 563–568