On the 18th and 22nd order differential schemes for the equations with convective and diffusion terms
Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 35-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The differential schemes of 18th and 22nd order for the convective and diffusion terms of partial differential equations are presented. The main estimated area of application for these schemes are the modeling of turbulence, vortex formation, aero acoustics. The properties of these compact differences are analyzed. Results of calculations of the isolated vortex instability and the formation of the subsonic turbulent coaxial jet are given.
Keywords: numerical simulation, high-accuracy compact schemes, Navier–Stokes equations, isolated vortex instability
Mots-clés : subsonic turbulent jet.
@article{MM_2017_29_6_a2,
     author = {A. D. Savel'ev},
     title = {On the 18th and 22nd order differential schemes for the equations with convective and diffusion terms},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {35--47},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a2/}
}
TY  - JOUR
AU  - A. D. Savel'ev
TI  - On the 18th and 22nd order differential schemes for the equations with convective and diffusion terms
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 35
EP  - 47
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_6_a2/
LA  - ru
ID  - MM_2017_29_6_a2
ER  - 
%0 Journal Article
%A A. D. Savel'ev
%T On the 18th and 22nd order differential schemes for the equations with convective and diffusion terms
%J Matematičeskoe modelirovanie
%D 2017
%P 35-47
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_6_a2/
%G ru
%F MM_2017_29_6_a2
A. D. Savel'ev. On the 18th and 22nd order differential schemes for the equations with convective and diffusion terms. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 35-47. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a2/

[1] A.I. Tolstykh, “A numerical method for the compressible Navier-Stokes equations for a wide range of Reynolds numbers”, Dokl. Akad. Nauk SSSR, 210:1 (1973), 48–51

[2] S.K. Lele, “Compact finite difference schemes with spectral-like resolution”, J. Comp. Phys., 102 (1992), 16–42

[3] M.R. Visbal, D.V. Gaitonde, “On the use of high-order finite-difference schemes on curvilinear and deforming meshes”, J. Comp. Phys., 181 (2002), 155–185

[4] T.H. Pulliam, “Artificial dissipation models for the Euler equations”, AIAA J., 24:12 (1986), 1931–1940

[5] A.D. Savelev, “Sostavnye kompaktnye skhemy vysokogo poryadka dlya modelirovaniya techenii vyazkogo gaza”, ZhVM i MF, 47:8 (2007), 1389–1403

[6] A.D. Savelev, “O strukture vnutrennei dissipatsii sostavnykh kompaktnykh skhem dlya resheniya zadach vychislitelnoi gazovoi dinamiki”, ZhVM i MF, 49:12 (2009), 2232–2246

[7] A.I. Tolstykh, “Multioperatornye skhemy proizvolnogo poryadka, ispolzuyuschie netsentrirovannye kompaktnye approksimatsii”, Dokl. RAN, 366:3 (1999), 319–322

[8] A.I. Tolstykh, “O multioperatornom metode postroeniya approksimatsii i skhem proizvolno vysokogo poryadka”, ZhVM i MF, 51:1 (2011), 56–73

[9] A.D. Savelev, “O multioperatornom predstavlenii sostavnykh kompaktnykh skhem”, ZhVM i MF, 54:10 (2014), 1580–1593

[10] M.V. Lipavskii, A.I. Tolstykh, E.N. Chigerev, “O chislennom modelirovanii neustoichivosti sdvigovykh sloev na osnove skhemy s multioperatornymi approksimatsiyami devyatogo poryadka”, ZhVM i MF, 53:3 (2013), 417–432

[11] H.C. Yee, N.D. Sandham, M.J. Djomehri, “Low dissipation high order shock-capturing methods using characteristic-based filters”, J. Comp. Phys., 150 (1999), 199–238

[12] A.D. Savelev, “Primenenie raznostnykh operatorov vysokogo poryadka pri chislennom modelirovanii zadach aerodinamiki”, Matematicheskoe modelirovanie, 24:4 (2012), 80–94

[13] F.R. Menter, Zonal two equation $k-\omega$ turbulence models for aerodynamic flows, AIAA Paper 93-2906, 1993, 21 pp.

[14] L.G. Loitsyanskii, Mekhanika zhidkosti i gaza, Nauka, M., 1987, 840 pp.; L.G. Loytsyansky, Mechanics of liquids and gases, Pergamon press, Oxford, 1966, 804 pp.

[15] J.L. Steger, “Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries”, AIAA J., 16:7 (1978), 679–687

[16] W.M. Chan, K. Sheriff, T.H. Pulliam, “Instabilities of two-dimensional inviscid compressible vortices”, J. Fluid Mech., 253 (1993), 173–209

[17] P.G. Yakovlev, “Izluchenie zvuka ploskim lokalizovannym vikhrem”, Akusticheskii zhurnal, 58:4 (2012), 563–568