The shock waves structure in the gas-particles mixture with chaotic pressure
Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The propagation of shock waves in a mixture of gas and fine solid particles is considered in the frame of the mathematical model Anderson taking into account the differences between phases velocities and pressures. An approximate mathematical model of the flow is offered, which ignores the dependence of the first phase pressure on the particles volume concentration, but takes into account the terms, representing the particle volume concentration multiplied on a gas phase pressure gradient. The mathematical model has a hyperbolic type in this case. Classification of the shock waves types is done that are realized in the mixture for these heterogeneous media mechanics equations. The propositions about shock waves types are illustrated by numerical calculations in the stationary and non-stationary statements. For this purpose the original numerical TVD-type method is developed.
Keywords: mixture of gas and solid particles, particle phase pressure, shock wave structure, frozen and dispersion shock waves, numerical methods.
@article{MM_2017_29_6_a0,
     author = {A. V. Fedorov and I. A. Bedarev},
     title = {The shock waves structure in the gas-particles mixture with chaotic pressure},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a0/}
}
TY  - JOUR
AU  - A. V. Fedorov
AU  - I. A. Bedarev
TI  - The shock waves structure in the gas-particles mixture with chaotic pressure
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 3
EP  - 20
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_6_a0/
LA  - ru
ID  - MM_2017_29_6_a0
ER  - 
%0 Journal Article
%A A. V. Fedorov
%A I. A. Bedarev
%T The shock waves structure in the gas-particles mixture with chaotic pressure
%J Matematičeskoe modelirovanie
%D 2017
%P 3-20
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_6_a0/
%G ru
%F MM_2017_29_6_a0
A. V. Fedorov; I. A. Bedarev. The shock waves structure in the gas-particles mixture with chaotic pressure. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a0/

[1] A.V. Fedorov, V.M. Fomin, Yu.A. Gosteev, Dinamika i vosplameneniye gazovzvesey, Izd-vo NGTU, Novosibirsk, 2006, 344 pp.

[2] A.V. Fedorov, V.M. Fomin, T.A. Khmel, Geterogennaia detonatsiia gazovzvesey, monografiia, Izd-vo NGTU, Novosibirsk, 2012, 264 pp.

[3] A.V. Fedorov, V.M. Fomin, T.A. Khmel, Volnovye protsessy v gazovzvesiakh chastits metallov, Parallel, Novosibirsk, 2015, 305 pp.

[4] A.V. Fedorov, “Matematicheskoye opisaniye techeniia smesi kondensirovannykh materialov pri vysokikh davleniiakh”, Fizicheskaia gazodinamika reagiruiushchikh sred, sb. nauch. tr., Nauka. Sib. otd., Novosibirsk, 1990, 119–128

[5] A.V. Fedorov, V.M. Fomin, “K teorii kombinirovannogo razryva v gazovzvesiakh”, Fizicheskaia gazodinamika reagiruiushchikh sred, sb. nauch. tr., Nauka. Sib. otd., Novosibirsk, 1990, 128–134

[6] A.V. Fedorov, “Struktura udarnoy volny v smesi dvukh tverdykh tel (gidrodinami-cheskoe priblizheniye)”, Modelirovanie v mekhanike, 5(22):4 (1991), 135–158

[7] A.V. Fedorov, N.N. Fedorova, “Structure, propagation, and reflection of shock waves in a mixture of solids (the hydrodynamic approximation)”, Journal of Applied Mechanics and Technical Physics, 33:4 (1992), 487–494

[8] A.V. Fedorov, “Structure of a combination discontinuity in gas suspensions in the presence of random pressure from particles”, Journal of Applied Mechanics and Technical Physics, 33:5 (1992), 487–494

[9] A.V. Fedorov, “Shock wave structure in a heterogeneous medium with two pressures”, Combustion, Explosion, and Shock Waves, 51:6 (2015), 678–687

[10] I.A. Bedarev, A.V. Fedorov, “Struktura i ustoychivost udarnoy volny v gazovzvesi s dvumia davleniiami”, Vychislitelnye tekhnologii, 20:2 (2015), 3–19

[11] Iu.V. Kazakov, A.V. Fedorov, V.M. Fomin, “Struktura izotermicheskikh udarnykh voln v gazovzvesiakh”, Problemy teorii filtratsii i mekhanika protsessov povysheniya nefteotdachi, Sb. st., Nauka, M., 1987, 108–115

[12] T.A. Khmel, “Chislennoe modelirovanie dvumernykh detonatsionnykh techeniy v gazovzvesi reagiruiushchikh tverdykh chastits”, Matematicheskoe modelirovanie, 16:6 (2004), 73–77

[13] A.V. Fedorov, T.A. Khmel, “Chislennye tekhnologii issledovaniia geterogennoy detonatsii”, Matematicheskoe modelirovanie, 18:8 (2006), 49–63

[14] G.A. Ruev, A.V. Fedorov, V.M. Fomin, “Development of the Rayleigh-Taylor instability due to interaction of a diffusion mixing layer of two gases with compression waves”, Shock Waves, 16:1 (2006), 65–74

[15] A.V. Fedorov, V.M. Fomin, G.A. Ruyev, “Fiziko-matematicheskoe modelirovanie peremeshivaniia raznoplotnykh gazov metodami mekhaniki neodnorodnykh sred”, Fizika udarnykh voln, goreniia, detonatsii, vzryva i neravnovesnykh protsessov, Kollektivnaia monografiia, v 2 ch., v. 1, eds. V.A. Levin, N.A. Fomin, V. Ye. Fortov, Institut teplo- i massoobmena imeni A. V. Lykova NAN Belarusi, Minsk, 2014, 255–278

[16] N.N. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp.

[17] S.R. Chakravathy, S. Osher, New Class of High Accuracy TVD Schemes Hyperbolic Conservation Laws, AAIA Paper, No 85 (0363), 1983, 11 pp.

[18] V.M. Kovenia, N.N. Yanenko, Metod rasshchepleniia v zadachakh gazovoy dinamiki, Nauka, Novosibirsk, 1981, 384 pp.

[19] O.A. Oleynik, “Razryvnye resheniia nelineynykh differentsialnykh uravneniy”, Uspekhi matematicheskikh nauk, 12:3(75) (1957), 3–73