Electric potential in the Earth's ionosphere: a numerical model
Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 122-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modeling of the global distribution of the electric potential in the Earth's ionosphere is based on the solution of the 2-D equation of electric current continuity in the ionosphere-magnetosphere current circuit. Potential distribution is described by the boundary value problem for an elliptic system of partial differential equations on the spherical shell approximating the ionosphere which is divided into three subregions with nonlocal boundary conditions. Implementation of the boundary conditions, which reflect the continuity of the overall current circuit and the equation of potential at the boundaries of the polar caps, leads to the mutual dependence of the potential distribution inside the northern and southern caps and their influence on the potential distribution in the mid-latitude region. The problem is solved by an iterative method with a regularizing operator which is inverted using separation of variables and the fast Fourier transform with respect to the azimuthal variable and the sweep method with respect to the latitudinal one.
Keywords: numerical modeling, Earth's ionosphere electrodynamics, plasma convection, partial differential equations, iterative methods.
@article{MM_2017_29_5_a9,
     author = {R. Yu. Lukianova},
     title = {Electric potential in the {Earth's} ionosphere: a numerical model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {122--132},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_5_a9/}
}
TY  - JOUR
AU  - R. Yu. Lukianova
TI  - Electric potential in the Earth's ionosphere: a numerical model
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 122
EP  - 132
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_5_a9/
LA  - ru
ID  - MM_2017_29_5_a9
ER  - 
%0 Journal Article
%A R. Yu. Lukianova
%T Electric potential in the Earth's ionosphere: a numerical model
%J Matematičeskoe modelirovanie
%D 2017
%P 122-132
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_5_a9/
%G ru
%F MM_2017_29_5_a9
R. Yu. Lukianova. Electric potential in the Earth's ionosphere: a numerical model. Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 122-132. http://geodesic.mathdoc.fr/item/MM_2017_29_5_a9/

[1] S. I. Akasofu, “Energy coupling between the solar wind and the magnetosphere”, Space Sci. Rev., 28 (1981), 121–190 | DOI

[2] S. E. Rasmussen, R. W. Schunk, “Ionospheric convection driven by NBZ currents”, J. Geophys. Res., A92:5 (1987), 4491–4504 | DOI

[3] V. E. Zakharov, M. I. Pudovkin, “Electrodynamic coupling between ionospheric convection patterns in the northern and southern hemispheres”, Ann. Geophys., 14 (1996), 419–430 | DOI

[4] V. O. Papitashvili, F. J. Rich, “High-latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction”, J. Geophys. Res., 107:A8 (2002), 1198 | DOI

[5] D. R. Weimer, “Improved ionospheric electrodynamic models and application to calculating Joule heating rates”, J. Geophys. Res., 110 (2005), A05306 | DOI

[6] J. M. Ruohoniemi, R. A. Greenwald, “Dependencies of high latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns”, J. Geophys. Res., 110 (2005), A09204 | DOI

[7] V. M. Uvarov, “Model raspredeleniia elektricheskogo polia v ionosfere, obuslovlennogo azimutalnoi komponentoi mezhplanetnogo magnitnogo polia”, Geomagnetizm i aeronomiia, 22:2 (1982), 216–219

[8] R. Lukianova, F. Christiansen, “Modeling of the global distribution of ionospheric electric field based on realistic maps of field-aligned currents”, J. Geophys. Res., 111 (2006), A03213 | DOI

[9] V. S. Vladimirov, Uravneniia matematicheskoi fiziki, Nauka, M., 1981, 512 pp.

[10] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Nauka, M., 1978, 592 pp.

[11] R. Lukianova, C. Hanuise, F. Christiansen, “Asymmetric distribution of the ionospheric electric potential in the opposite hemispheres as inferred from the SuperDARN observations and FAC-based convection model”, J. Atmos. Solar-Terr. Phys., 70 (2008), 2324–2335 | DOI