Application of the Richardson method in case of the unknown lower bound of a problem spectrum
Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 96-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm, which allows to use an iterative Richardson's method for solving a system of linear algebraic equations, with the matrix corresponding to a sign-definite self-adjoint operator, in case of the absence of information about the lower boundary of the spectrum of problem is presented. The algorithm is based on the simultaneous operation of the two competing processes, the effectiveness of which is constantly analyzed. The elements of linear algebra concerning the spectral estimates, which are necessary to understand the details of the Richardson method with Chebyshev set of parameters, are presented. The method is explained on the example of onedimensional equation of elliptic type.
Keywords: system of linear algebraic equations; matrix inversion; iterative methods; Richardson method.
@article{MM_2017_29_5_a7,
     author = {M. V. Popov and Yu. A. Poveschenko and V. A. Gasilov and A. V. Koldoba and T. S. Poveschenko},
     title = {Application of the {Richardson} method in case of the unknown lower bound of a problem spectrum},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--108},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_5_a7/}
}
TY  - JOUR
AU  - M. V. Popov
AU  - Yu. A. Poveschenko
AU  - V. A. Gasilov
AU  - A. V. Koldoba
AU  - T. S. Poveschenko
TI  - Application of the Richardson method in case of the unknown lower bound of a problem spectrum
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 96
EP  - 108
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_5_a7/
LA  - ru
ID  - MM_2017_29_5_a7
ER  - 
%0 Journal Article
%A M. V. Popov
%A Yu. A. Poveschenko
%A V. A. Gasilov
%A A. V. Koldoba
%A T. S. Poveschenko
%T Application of the Richardson method in case of the unknown lower bound of a problem spectrum
%J Matematičeskoe modelirovanie
%D 2017
%P 96-108
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_5_a7/
%G ru
%F MM_2017_29_5_a7
M. V. Popov; Yu. A. Poveschenko; V. A. Gasilov; A. V. Koldoba; T. S. Poveschenko. Application of the Richardson method in case of the unknown lower bound of a problem spectrum. Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 96-108. http://geodesic.mathdoc.fr/item/MM_2017_29_5_a7/

[1] V. T. Zhukov, “Explicit methods of numerical integration for parabolic equations”, Math. Models and Comput. Simul., 3:3 (2011), 311–332 | DOI | MR | Zbl

[2] Z. M. Yang, “A simple method for estimating the bounds of spectral radius of nonnegative irreducible matrices”, Applied Mathem. E-Notes, 11 (2011), 67–72 | MR | Zbl

[3] H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, T.-X. Gu, “Chebyshev-type methods and preconditioning techniques”, Applied Mathem. and Comput., 218 (2011), 260–270 | DOI | MR | Zbl

[4] G. Strang, Linear algebra and its applications, 4th edition, Cengage Learning, 2006, 487 pp.

[5] A. A. Samarskii, The theory of difference schemes, 1 edition, CRC Press, 2001, 788 pp. | MR

[6] A. A. Samarskii, E. S. Nikolaev, Numerical Methods for Grid Equations, v. 2, Iterative Methods, Birkhauser Verlag AG, 1988, 518 pp. | MR

[7] L. V. Kantorovich, G. P. Akilov, Functional analysis in normed spaces, Pergamon Press, 1964, 773 pp. | MR | Zbl

[8] V. L. Goncharov, The theory of interpolation and approximation of functions, GosTekhIzdat, M., 1954, 327 pp. (In Russian)

[9] V. I. Lebedev, S. A. Finogenov, “Solution of the parameter ordering problem in Chebyshev iterative methods”, USSR Comput. Mathem. and Mathem. Physics, 13:1 (1973), 21–41 | DOI | MR | Zbl

[10] V. I. Lebedev, S. A. Finogenov, “Ordering of the iterative parameters in the cyclical Chebyshev iterative method”, USSR Comput. Mathem. and Mathem. Physics, 11:2 (1971), 155–170 | DOI | Zbl

[11] E. S. Nikolaev, A. A. Samarskii, “Selection of the iterative parameters in Richardson's method”, USSR Comput. Mathem. and Mathem. Physics, 12:4 (1972), 141–158 | DOI | MR | Zbl