Two approaches to describe the turbulent exchange within the atmospheric surface layer
Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 46-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two two-dimensional models describing the interaction of the air flow with heterogeneous vegetation cover within the atmospheric surface layer are presented. The models use the different methods to close the averaged system of the Navier–Stokes and the continuity equations and apply also the various approaches to describe the interaction of the turbulent air flow with vegetation elements. The first model is based on so-called 1.5 order closure scheme and the interaction of the air flow with vegetation is described using the force of kinetic friction. In the second model the first order closure is used and the wind field nearby vegetation borders is modelled by means of the theory of contrast structures. The results of numerical experiments provided by the models to describe the spatial wind distribution within the atmospheric surface layer after interaction of the air flow with non-uniform vegetation cover such as the forest belt and clear-cutting area are presented.
Keywords: Navier–Stokes equation, turbulent exchange, atmospheric surface layer, heterogeneous vegetation, closure of system of equations, contrast structure, internal transition layer, forest belt, clear-cutting.
@article{MM_2017_29_5_a3,
     author = {N. T. Levashova and J. V. Muhartova and A. V. Olchev},
     title = {Two approaches to describe the turbulent exchange within the atmospheric surface layer},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {46--60},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_5_a3/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - J. V. Muhartova
AU  - A. V. Olchev
TI  - Two approaches to describe the turbulent exchange within the atmospheric surface layer
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 46
EP  - 60
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_5_a3/
LA  - ru
ID  - MM_2017_29_5_a3
ER  - 
%0 Journal Article
%A N. T. Levashova
%A J. V. Muhartova
%A A. V. Olchev
%T Two approaches to describe the turbulent exchange within the atmospheric surface layer
%J Matematičeskoe modelirovanie
%D 2017
%P 46-60
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_5_a3/
%G ru
%F MM_2017_29_5_a3
N. T. Levashova; J. V. Muhartova; A. V. Olchev. Two approaches to describe the turbulent exchange within the atmospheric surface layer. Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 46-60. http://geodesic.mathdoc.fr/item/MM_2017_29_5_a3/

[1] Elizarova T. G., Kvazigazodinamicheskie uravneniia i metody rascheta viazkikh techenii, Nauchnyi Mir, M., 2007, 349 pp.

[2] Stull R., An introduction to Boundary Layer Meteorology, Kluwer Academic, Dordrecht, The Netherlands, 1988, 358 pp. | Zbl

[3] Foken T., Micrometeorology, Springer Verlag, Heidelberg, 2008, 308 pp.

[4] Garrat J. R., The Atmospheric Boundary Layer, Cambridge University Press, 1992, 316 pp.

[5] Sogachev A., Panferov O., “Modification of two-equation models to account for plant drag”, Bound. Layer Meteorol, 121 (2006), 229–266 | DOI

[6] Olchev A., Radler K., Sogachev A., Panferov O., Gravenhorst G., “Application of a three-dimensional model for assessing effects of small clear-cuttings on radiation and soil temperature”, Ecological Modelling, 220 (2009), 3046–3056 | DOI

[7] Mukhartova Iu. V., Levashova N. T., Olchev A. V., Shapkina N. E., “Primenenie dvumernoi modeli dlia opisaniia turbulentnogo perenosa CO2 v prostranstvenno-neodnorodnom rastitelnom pokrove”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2015, no. 1, 15–22

[8] Levashova H. T., Mukhartova Iu. V., Davydova M. A., Shapkina N. E., Olchev A. V., “Primenenie teorii kontrastnykh struktur dlia opisaniia polia skorosti vetra v prostranstvenno-neodnorodnom rastitelnom pokrove”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2015, no. 3, 3–10

[9] Pielke R., Mesoscale meteorological modelling, second ed., Academic Press, San Diego, California, 2002, 676 pp.

[10] Sogachev A., “A Note on Two-Equation Closure Modelling of Canopy Flow”, Boundary-Layer Meteorol., 130:3 (2009), 423–436 | DOI

[11] Sogachev A., Menzhulin G. V., Heimann M., Lloyd J., “A simple three dimensional canopy — planetary boundary layer simulation model for scalar concentrations and fluxes”, Tellus, 54B:5 (2002), 784–819

[12] Wilcox D. C., Turbulence modeling for CFD, Third Edition, DCW Industries, Inc., 2006, 522 pp.

[13] Krzikalla F., Numerical Investigation of the Interaction between Wind and Forest under Heterogeneous Conditions, Diploma Thesis, Institute for Hydromechanics University of Karlsruhe, Karlsruhe, Germany, 2005, 96 pp.

[14] Vasilev V. A., Romanovskii Iu. M., Iakhno V. G., Avtovolnovye protsessy, Nauka, M., 1987, 240 pp.

[15] Monin A. S., Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, L., 1988, 424 pp.

[16] Zeldovich Ia. B., Frank-Kamenetskii D. A., “Teoriia teplovogo rasprostraneniia plameni”, Zhurnal fizicheskoi khimii, 12 (1938), 100

[17] Cionco R. M., “A Mathematical Model for Air Flow in a Vegetative Canopy”, J. of Appl Meteorol., 4 (1965), 517–522 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[18] Raupach M. R., Antonia R. A., Rajagopalan S., “Rough wall turbulent boundary layers”, Applied Mechanics Reviews, 44 (1991), 1–25 | DOI

[19] Nefedov N. N., Davydova M. A., “Contrast structures in singularly perturbed quasilinear reaction-diffusion-advection equations”, Differential Equations, 49:6 (2013), 688–706 | DOI | MR | Zbl

[20] Belotserkovskii O. M., Chislennoe modelirovanie v mekhanike sploshnykh sred, Fiziko-matematicheskaia literatura, M., 1994, 442 pp.