Simulation of unsteady isotropic turbulent flows on unstructured meshes using edge-based algorithms
Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 27-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers the results of investigation of edge-based reconstruction (EBR) schemes applied to far from walls turbulent flows simulation using scale-resolving approaches. The simulations were done for two canonical problems. The first one is Taylor–Green vortex evolution at Reynolds number Re=1600. Also the decay of homogenous isotropic turbulence problem at Re=1638 is considered. Computations were carried out using different unstructured meshes with varying resolution. The evaluation of results of simulations was done based on comparison with corresponding reference data and the results of direct numerical simulation.
Keywords: numerical simulation of turbulent flows, higher-order schemes, unstructured meshes, Taylor–Green vortex, homogenous isotropic turbulence.
@article{MM_2017_29_5_a2,
     author = {A. P. Duben and T. K. Kozubskaya and D. V. Potapov},
     title = {Simulation of unsteady isotropic turbulent flows on unstructured meshes using edge-based algorithms},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {27--45},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_5_a2/}
}
TY  - JOUR
AU  - A. P. Duben
AU  - T. K. Kozubskaya
AU  - D. V. Potapov
TI  - Simulation of unsteady isotropic turbulent flows on unstructured meshes using edge-based algorithms
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 27
EP  - 45
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_5_a2/
LA  - ru
ID  - MM_2017_29_5_a2
ER  - 
%0 Journal Article
%A A. P. Duben
%A T. K. Kozubskaya
%A D. V. Potapov
%T Simulation of unsteady isotropic turbulent flows on unstructured meshes using edge-based algorithms
%J Matematičeskoe modelirovanie
%D 2017
%P 27-45
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_5_a2/
%G ru
%F MM_2017_29_5_a2
A. P. Duben; T. K. Kozubskaya; D. V. Potapov. Simulation of unsteady isotropic turbulent flows on unstructured meshes using edge-based algorithms. Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 27-45. http://geodesic.mathdoc.fr/item/MM_2017_29_5_a2/

[1] C. A. J. Fletcher, Computational Galerkin methods, Springer, 1984, 309 pp. | MR | Zbl

[2] I. V. Abalakin, P. A. Bakhvalov, T. K. Kozubskaya, “Edge-Based Methods in CAA”, Accurate and Efficient Aeroacoustic Prediction Approaches for Airframe Noise, Lecture Series, 2013–03, eds. C. Schram, R. Denos, E. Lecomte, von Karman Institute for Fluid Dynamics, 2013

[3] I. V. Abalakin, P. A. Bakhvalov, T. K. Kozubskaya, “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustic problems”, International Journal of Aeroacoustics, 13:3–4 (2014), 207–234

[4] I. V. Abalakin, P. A. Bakhvalov, T. K. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Int. J. Numer. Meth. Fl., 81:6 (2016), 331–356 | DOI | MR

[5] A. P. Duben, “Computational technologies for simulation of complex near-wall turbulent flows using unstructured meshes”, Mathem. Models and Computer Simulations, 6:2 (2014), 162–171 | DOI | MR

[6] W. M. van Rees, A. Leonard, D. I. Pullin, P. Koumoutsakos, “A comparison of vortex and pseudospectral methods for the simulation of periodic vortical flows at high Reynolds numbers”, J. Comput. Phys., 230 (2011), 2794–2805 | DOI | MR | Zbl

[7] M. E. Brachet, D. I. Meiron, S. A. Orszag, B. G. Nickel, R. H. Morf, U. Frisch, “Small-scale structure of the Taylor–Green vortex”, J. Fluid Mech., 130 (1983), 411–452 | DOI | Zbl

[8] M. E. Brachet, “Direct numerical simulation of three-dimensional turbulence in the Taylor–Green vortex”, Fluid Dyn. Res., 8 (1991), 1–8 | DOI

[9] J. R. Bull, A. Jameson, Simulation of the Compressible Taylor Green Vortex using High-Order Flux Reconstruction Schemes, AIAA 2014-3210, 2014

[10] J. R. DeBonis, Solutions of the Taylor–Green Vortex Problem Using High-Resolution Explicit Finite Difference Methods, Report NASA/TM-2013-217850, 2013

[11] G. J. Gassner, A. D. Beck, “On the accuracy of high-order discretizations for underresolved turbulence simulations”, Theor. Comput. Fluid Dyn., 27 (2013), 221–237 | DOI

[12] D. Drikakis, C. Fureby, F. F. Grinstein, D. Youngs, “Simulation of transition and turbulence decay in the Taylor–Green vortex”, J. Turbul., 8:20 (2007), 1–12

[13] S. Bidadi, S. L. Rani, “Investigation of numerical viscosities and dissipation rates of second-order TVD-MUSCL schemes for implicit large-eddy simulation”, J. Comput. Phys., 281 (2015), 1003–1031 | DOI | MR | Zbl

[14] W. Haase, M. Braza, A. Revell (eds.), DESider — A European Effort on Hybrid RANS-LES Modelling, Springer, 2009

[15] G. Comte-Bellot, S. Corrsin, “Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, isotropic turbulence”, J. Fluid. Mech., 48 (1971), 273–337 | DOI

[16] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura, A. Uno, “Energy dissipation rate and energy spectrum in high resolution direct numerical simulations of turbulence in a periodic box”, Physics of Fluids, 15:2 (2003), L21–L24 | DOI | MR

[17] T. Ishihara, T. Gotoh, Y. Kaneda, “Study of High-Reynolds Number Isotropic Turbulence by Direct Numerical Simulation”, Annu. Rev. Fluid Mech., 41 (2009), 165–180 | DOI | MR | Zbl

[18] J. Jiménez, A. Wray, P. Saffman, R. Rogallo, “The structure of intense vorticity in isotropic turbulence”, Journal of Fluid Mechanics, 255 (1993), 65–90 | DOI | MR | Zbl

[19] A. Wray, Unpublished DNS data. Available on AGARD database “Test Cases for the Validation of Large-Eddy Simulations of Turbulent Flows”, , 1997 ftp://torroja.dmt.upm.es

[20] J. Smagorinsky, “General Circulation Experiments with the Primitive Equations. I. The Basic Experiment”, Month. Wea. Rev., 91 (1963), 99–164 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[21] P. R. Spalart, W. H. Jou, M. Kh. Strelets, S. R. Allmaras, “Comments op the feasibility of LES for wings, and on a hybrid RANS/LES approach”, Proc. of the First AFOSR Int. Conf. on DNS/LES (Ruston, USA, 1997), 137–148

[22] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Numerical Methods and Programming, 13:3 (2012), 110–125

[23] L. Roe, “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl

[24] R. A. Watson, P. G. Tucker, Z.-N. Wang, X. Yuan, “Towards robust unstructured turbomachinery large eddy simulation”, Computers Fluids, 118 (2015), 245–254 | DOI