Numerical methods of identification for discrete-state continuous-time Markov processes
Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 133-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical technique for identification of discrete-state continuous-time Markov models is presented. Appropriate algorithms including gradient method, the exhaustive search method and the brute force of significant parameters based on sensitivity analysis of minimization criterion are presented. A study of performance characteristics was carried out, the procedure and conditions of computer experiments are presented including types of models in use, parameters of the algorithms, parameters of the computer system. Analysis of computer experiments showed advantages of the developed identification methods over the classical first order gradient method.
Keywords: Markov models, models identification, multivariate non-linear optimization.
@article{MM_2017_29_5_a10,
     author = {L. S. Kuravsky and P. A. Marmalyuk and G. A. Yuryev and P. N. Dumin},
     title = {Numerical methods of identification for discrete-state continuous-time {Markov} processes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {133--146},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_5_a10/}
}
TY  - JOUR
AU  - L. S. Kuravsky
AU  - P. A. Marmalyuk
AU  - G. A. Yuryev
AU  - P. N. Dumin
TI  - Numerical methods of identification for discrete-state continuous-time Markov processes
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 133
EP  - 146
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_5_a10/
LA  - ru
ID  - MM_2017_29_5_a10
ER  - 
%0 Journal Article
%A L. S. Kuravsky
%A P. A. Marmalyuk
%A G. A. Yuryev
%A P. N. Dumin
%T Numerical methods of identification for discrete-state continuous-time Markov processes
%J Matematičeskoe modelirovanie
%D 2017
%P 133-146
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_5_a10/
%G ru
%F MM_2017_29_5_a10
L. S. Kuravsky; P. A. Marmalyuk; G. A. Yuryev; P. N. Dumin. Numerical methods of identification for discrete-state continuous-time Markov processes. Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 133-146. http://geodesic.mathdoc.fr/item/MM_2017_29_5_a10/

[1] Kuravsky L. S., Margolis A. A., Iurev G. A., Marmaliuk P. A., “Kontseptsiia sistemy podderzhki priniatiia reshenii dlia psikhologicheskogo testirovaniia”, Psikhologicheskaia nauka i obrazovanie, 2012, no. 1, 56–65

[2] Kuravsky L. S., Marmaliuk P. A., Alkhimov V. I., IUrev G. A., “Matematicheskie osnovy novogo podkhoda k postroeniiu protsedur testirovaniia”, Eksperimentalnaia psikhologiia, 5:4 (2012), 75–98

[3] Kuravsky L. S., Margolis A. A., Marmaliuk P. A., Iurev G. A., Dumin P. N., “Obuchaemye markovskie modeli v zadachakh optimizatsii poriadka predieiavleniia psikhologicheskikh testov”, Neirokompiutery razrabotka i primenenie, 2013, no. 4, 28–38

[4] Kuravsky L. S., Marmaliuk P. A., Alkhimov V. I., Iurev G. A., “Novyi podkhod k postroeniiu intellektualnykh i kompetentnostnykh testov”, Modelirovanie i analiz dannykh, 2013, no. 1, 4–28

[5] Kuravsky L. S., Marmaliuk P. A., Barabanshchikov V. A., Bezrukikh M. M., Demidov A. A., Ivanov V. V., Iurev G. A., “Otsenka stepeni sformirovannosti navykov i kompetentsii na osnove veroiatnostnykh raspredelenii glazodvigatelnoi aktivnosti”, Voprosy psikhologii, 2013, no. 5, 64–81

[6] L. S. Kuravsky (red.), Markovskie modeli v zadachakh diagnostiki i prognozirovaniia, Ucheb posobie, RUSAVIA, M., 2013, 172 pp.

[7] Ovcharov L. A., Prikladnye zadachi teorii massovogo obsluzhivaniia, Mashinostroenie, M., 1969, 324 pp.

[8] Kramer G., Matematicheskie metody statistiki, Mir, M., 1976, 648 pp.

[9] Formalev V. F., Reviznikov D. L., Chislennye metody, Fizmatlit, M., 2004, 400 pp.

[10] The R Project for Statistical Computing, (data obrascheniya: 25.04.2014) http://r-project.org/