Computer simulation of hydrogen thermal desorption spectra
Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 121-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the technological challenges for hydrogen materials science (including ITER project) is the currently active search for structural materials with various potential applications that will have predetermined limits of hydrogen permeability. One of the experimental methods is thermodesorption spectrometry (TDS). A hydrogen-saturated sample is degassed under vacuum and monotone heating. The desorption flux is measured by mass spectrometer to determine the character of interactions of hydrogen isotopes with the solid. We are interested in such transfer parameters as the coefficients of diffusion, dissolution, desorption. The paper presents a distributed boundary value problem of thermal desorption and a numerical method for TDS-spectrum simulation, where only integration of a non-linear ODE system of low order (compared with, e.g., the method of lines) is required. The results of numerical modeling are presented.
Keywords: hydrogen interaction with solids; surface processes; thermal desorption; dynamical boundary-value problems; computer simulation.
@article{MM_2017_29_4_a9,
     author = {Yu. V. Zaika and E. K. Kostikova},
     title = {Computer simulation of hydrogen thermal desorption spectra},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--136},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a9/}
}
TY  - JOUR
AU  - Yu. V. Zaika
AU  - E. K. Kostikova
TI  - Computer simulation of hydrogen thermal desorption spectra
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 121
EP  - 136
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a9/
LA  - ru
ID  - MM_2017_29_4_a9
ER  - 
%0 Journal Article
%A Yu. V. Zaika
%A E. K. Kostikova
%T Computer simulation of hydrogen thermal desorption spectra
%J Matematičeskoe modelirovanie
%D 2017
%P 121-136
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a9/
%G ru
%F MM_2017_29_4_a9
Yu. V. Zaika; E. K. Kostikova. Computer simulation of hydrogen thermal desorption spectra. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 121-136. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a9/

[1] L. L. Kunin, A. I. Golovin, Iu. I. Surovoi, V. M. Khokhrin, Problemy degazatsii metallov, Nauka, M., 1972, 324 pp.

[2] G. Alefeld, J. Volkl (eds.), Hydrogen in metals, v. I, Basic Properties, Springer-Verlag, Berlin–Heidelberg–NY., 1978, 427 pp.; v. II, Application-oriented Properties, 387 pp.

[3] A. P. Zakharov (ed.), Vzaimodeistvie vodoroda s metallami, Nauka, M., 1987, 294 pp.

[4] M. Ball, M. Wietschel (eds.), The hydrogen economy, Cambridge University Press, 2009, 646 pp.

[5] M. Hirscher (ed.), Handbook of hydrogen storage, Wiley-VCH, 2010, 353 pp. | MR

[6] A. A. Pisarev, I. V. Tsvetkov, E. D. Marenkov, S. S. Iarko, Pronitsaemost vodoroda cherez metally, MIFI, M., 2008, 144 pp.

[7] Iu. P. Cherdantsev, I. P. Chernov, Iu. I. Tiurin, Metody issledovaniia sistem metall-vodorod, TPU, Tomsk, 2008, 286 pp.

[8] A. A. Iukhimchuk, Izotopy vodoroda. Fundamentalnye i prikladnye issledovaniia, RFIaTs–VNIIEF, Sarov, 2009, 697 pp.

[9] M. V. Lototskyy, V. A. Yartys, B. G. Pollet, R. C. Jr. Bowman, “Metal hydride hydrogen compressors: a review”, International Journal of Hydrogen Energy, 39 (2014), 5818–5851 | DOI

[10] F. J. Castro, G. Meyer, “Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization”, Journal of Alloys and Compounds, 330–332 (2002), 59–63 | DOI

[11] D. A. Indeitsev, B. N. Semenov, “About a model of structure-phase transfomations under hydrogen influence”, Acta Mechanica, 195 (2008), 295–304 | DOI | MR | Zbl

[12] E. A. Evard, I. E. Gabis, V. A. Yartys, “Kinetics of hydrogen evolution from MgH2: experimental studies, mechanism and modeling”, Int. Journal of Hydrogen Energy, 35 (2010), 9060–9069 | DOI

[13] Yu. V. Zaika, N. I. Rodchenkova, “Boundary-value problem with moving bounds and dynamic boundary conditions”, Applied Mathematical Modelling, 33:10 (2009), 3776–3791 | DOI | MR | Zbl

[14] N. I. Rodchenkova, Yu. V. Zaika, “Numerical modelling of hydrogen desorption from cylindrical surface”, International Journal of Hydrogen Energy, 36:1 (2011), 1239–1247 | DOI

[15] Yu. V. Zaika, N. I. Rodchenkova, “Hydrogen-solid boundary-value problems with dynamical conditions on surface”, Mathematical Modeling, Nova Sci. Publ., NY., 2013, 269–302

[16] Yu. V. Zaika, N. I. Rodchenkova, “Hydrogen-solid boundary-value problems with free phase transition interface”, Advances in Mathematics Research, 15, Nova Sci. Publ., NY., 2012, 128–180

[17] Yu. V. Zaika, E. K. Kostikova, “Computer simulation of hydrogen thermodesorption”, Advances in Materials Science and Applications, 3:3 (2014), 120–129 | DOI

[18] Iu. V. Zaika, Integralnye operatory prognozirovaniia i identifikatsiia modelei vodorodopronitsaemosti, KarNTs RAN, Petrozavodsk, 2013, 505 pp.

[19] L. K. Martinson, Iu. I. Malov, Differentsialnye uravneniia matematicheskoi fiziki, MGTU, M., 2002, 368 pp.

[20] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977, 365 pp. | MR | Zbl

[21] A. I. Egorov, Uravneniia Rikkati, Fizmatlit, M., 2001, 378 pp.

[22] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1996, 612 pp. | MR | Zbl

[23] S. Leng, Elliptic functions, Addison-Wesley publishing, 1973 | MR