Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_4_a9, author = {Yu. V. Zaika and E. K. Kostikova}, title = {Computer simulation of hydrogen thermal desorption spectra}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {121--136}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a9/} }
Yu. V. Zaika; E. K. Kostikova. Computer simulation of hydrogen thermal desorption spectra. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 121-136. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a9/
[1] L. L. Kunin, A. I. Golovin, Iu. I. Surovoi, V. M. Khokhrin, Problemy degazatsii metallov, Nauka, M., 1972, 324 pp.
[2] G. Alefeld, J. Volkl (eds.), Hydrogen in metals, v. I, Basic Properties, Springer-Verlag, Berlin–Heidelberg–NY., 1978, 427 pp.; v. II, Application-oriented Properties, 387 pp.
[3] A. P. Zakharov (ed.), Vzaimodeistvie vodoroda s metallami, Nauka, M., 1987, 294 pp.
[4] M. Ball, M. Wietschel (eds.), The hydrogen economy, Cambridge University Press, 2009, 646 pp.
[5] M. Hirscher (ed.), Handbook of hydrogen storage, Wiley-VCH, 2010, 353 pp. | MR
[6] A. A. Pisarev, I. V. Tsvetkov, E. D. Marenkov, S. S. Iarko, Pronitsaemost vodoroda cherez metally, MIFI, M., 2008, 144 pp.
[7] Iu. P. Cherdantsev, I. P. Chernov, Iu. I. Tiurin, Metody issledovaniia sistem metall-vodorod, TPU, Tomsk, 2008, 286 pp.
[8] A. A. Iukhimchuk, Izotopy vodoroda. Fundamentalnye i prikladnye issledovaniia, RFIaTs–VNIIEF, Sarov, 2009, 697 pp.
[9] M. V. Lototskyy, V. A. Yartys, B. G. Pollet, R. C. Jr. Bowman, “Metal hydride hydrogen compressors: a review”, International Journal of Hydrogen Energy, 39 (2014), 5818–5851 | DOI
[10] F. J. Castro, G. Meyer, “Thermal desorption spectroscopy (TDS) method for hydrogen desorption characterization”, Journal of Alloys and Compounds, 330–332 (2002), 59–63 | DOI
[11] D. A. Indeitsev, B. N. Semenov, “About a model of structure-phase transfomations under hydrogen influence”, Acta Mechanica, 195 (2008), 295–304 | DOI | MR | Zbl
[12] E. A. Evard, I. E. Gabis, V. A. Yartys, “Kinetics of hydrogen evolution from MgH2: experimental studies, mechanism and modeling”, Int. Journal of Hydrogen Energy, 35 (2010), 9060–9069 | DOI
[13] Yu. V. Zaika, N. I. Rodchenkova, “Boundary-value problem with moving bounds and dynamic boundary conditions”, Applied Mathematical Modelling, 33:10 (2009), 3776–3791 | DOI | MR | Zbl
[14] N. I. Rodchenkova, Yu. V. Zaika, “Numerical modelling of hydrogen desorption from cylindrical surface”, International Journal of Hydrogen Energy, 36:1 (2011), 1239–1247 | DOI
[15] Yu. V. Zaika, N. I. Rodchenkova, “Hydrogen-solid boundary-value problems with dynamical conditions on surface”, Mathematical Modeling, Nova Sci. Publ., NY., 2013, 269–302
[16] Yu. V. Zaika, N. I. Rodchenkova, “Hydrogen-solid boundary-value problems with free phase transition interface”, Advances in Mathematics Research, 15, Nova Sci. Publ., NY., 2012, 128–180
[17] Yu. V. Zaika, E. K. Kostikova, “Computer simulation of hydrogen thermodesorption”, Advances in Materials Science and Applications, 3:3 (2014), 120–129 | DOI
[18] Iu. V. Zaika, Integralnye operatory prognozirovaniia i identifikatsiia modelei vodorodopronitsaemosti, KarNTs RAN, Petrozavodsk, 2013, 505 pp.
[19] L. K. Martinson, Iu. I. Malov, Differentsialnye uravneniia matematicheskoi fiziki, MGTU, M., 2002, 368 pp.
[20] J. Hale, Theory of Functional Differential Equations, Springer-Verlag, 1977, 365 pp. | MR | Zbl
[21] A. I. Egorov, Uravneniia Rikkati, Fizmatlit, M., 2001, 378 pp.
[22] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 1996, 612 pp. | MR | Zbl
[23] S. Leng, Elliptic functions, Addison-Wesley publishing, 1973 | MR