Car-following model with explicit reaction-time delay~--- linear stability analysis of the uniform solution on a ring
Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 88-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

Car-following model with explicit reaction-time delay is considered. Vehicle's acceleration depends on the actual speed, the leader's speed, and the gap. The acceleration function includes the reaction-time delay of drivers explicitly. On the one hand, it is the advantage of the model, on the other hand, the mathematical analysis of the model becomes more complicated. We investigate the stability of the uniform flow on a ring. Via Hopf bifurcations linear stability conditions of the steady-state solution on a ring are obtained. Our investigations proof that model parameter values and reaction-time delay exist, which fulfill the stability conditions obtained and guarantee the realistic vehicles' dynamics simultaneously. We also show that the car-following model considered is able to reproduce such phenomenon as propagation of so-called stop-and-go waves, which present in real observations of traffic flow. This is another advantage of the model, because realistic models should have unstable uniform solutions.
Keywords: traffic flow theory, delay differential equations, linear stability analysis, uniform solutions on a ring, Hopf bifurcation.
@article{MM_2017_29_4_a6,
     author = {V. V. Kurtc and I. E. Anufriev},
     title = {Car-following model with explicit reaction-time delay~--- linear stability analysis of the uniform solution on a ring},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {88--100},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a6/}
}
TY  - JOUR
AU  - V. V. Kurtc
AU  - I. E. Anufriev
TI  - Car-following model with explicit reaction-time delay~--- linear stability analysis of the uniform solution on a ring
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 88
EP  - 100
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a6/
LA  - ru
ID  - MM_2017_29_4_a6
ER  - 
%0 Journal Article
%A V. V. Kurtc
%A I. E. Anufriev
%T Car-following model with explicit reaction-time delay~--- linear stability analysis of the uniform solution on a ring
%J Matematičeskoe modelirovanie
%D 2017
%P 88-100
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a6/
%G ru
%F MM_2017_29_4_a6
V. V. Kurtc; I. E. Anufriev. Car-following model with explicit reaction-time delay~--- linear stability analysis of the uniform solution on a ring. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 88-100. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a6/

[1] Sait kompanii Transport Simulation Systems, http://www.aimsun.com

[2] Sait produkta MITSIM, http://mit.edu/its/mitsimlab.html

[3] Sait kompanii SIAS Transport Planners, http://www.sias.com/ng/home/home.htm

[4] Sait produkta VISSIM, http://www.vissim.de

[5] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, Y. Sugiyama, “Dynamical model of traffic congestion and numerical simulation”, Phys. Rev. E, 51 (1995), 1035 | DOI

[6] G. Orosz, R. E. Wilson, B. Krauskopf, “Global bifurcation investigation of an optimal velocity traffic model with driver reaction time”, Phys. Rev. E, 70:2 (2004), 026207 | DOI | MR

[7] G. Orosz, B. Krauskopf, R. E. Wilson, “Bifurcations and multiple traffic jams in a car-following model with reaction-time delay”, Physica D, 211 (2005), 277–293 | DOI | MR | Zbl

[8] Y. Sugiyama, M. Fukui, M. Kikushi, K. Hasebe, A. Nakayama, K. Nishinari, S. Tadaki, “Traffic jams without bottlenecks. Experimental evidence for the physical mechanism of the formation of a jam”, New J. Phys., 10:3 (2008), 033001 | DOI

[9] V. V. Kurtc, I. E. Anufriev, “Novie mikroskopicheskie modeli avtomobilnogo trafika”, Zhurnal NTV CPbGPU, 2012, no. 4, 50–56

[10] V. V. Kurts, I. E. Anufriev, “Bystryi algoritm s kratnymi shagami dlia zadachi modelirovaniia transportnykh potokov”, Matematicheskoe modelirovanie, 28:5 (2016), 124–134 | Zbl

[11] A. V. Gasnikov, Vvedenie v matematicheskoe modelirovanie transportnykh potokov, MFTI, M., 2010, 362 pp.

[12] G. Orosz, R. E. Wilson, G. Stepan, “Traffic jams: dynamics and control”, Phil. Trans. R. Soc. A, 368 (2010), 4455–4479 | DOI | MR | Zbl

[13] M. Treiber, A. Kesting, Traffic Flow Dynamics, Springer, Berlin, 2013 | MR

[14] P. A. Cook, “Conditions for string stabiliy”, Systems and Control Letters, 54:10 (2005), 991–998 | DOI | MR | Zbl

[15] R. E. Wilson, Phil. Trans. R. Soc. A, 366 (2008), 2017–2032 | DOI | Zbl

[16] M. Lakshmanan, D. V. Senthikumar, Dynamics of Nonlinear Time-Delay Systems, Springer-Verlag, Berlin–Heidelberg, 2010 | MR | Zbl

[17] S. Yukawa, M. Kikuchi, A. Nakayama, K. Nishinari, Y. Sugiyama, S. Tadaki, “Observational Aspects of Japanese Highway Traffic”, Traffic and Granular Flow'01, 2003, 243–257 | DOI