Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_4_a4, author = {A. V. Karakin and M. M. Ramazanov and V. E. Borisov and I. S. Men'shov and E. B. Savenkov}, title = {Self-similar solution of hydraulic fracture problem for poroelastic medium}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {59--74}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a4/} }
TY - JOUR AU - A. V. Karakin AU - M. M. Ramazanov AU - V. E. Borisov AU - I. S. Men'shov AU - E. B. Savenkov TI - Self-similar solution of hydraulic fracture problem for poroelastic medium JO - Matematičeskoe modelirovanie PY - 2017 SP - 59 EP - 74 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a4/ LA - ru ID - MM_2017_29_4_a4 ER -
%0 Journal Article %A A. V. Karakin %A M. M. Ramazanov %A V. E. Borisov %A I. S. Men'shov %A E. B. Savenkov %T Self-similar solution of hydraulic fracture problem for poroelastic medium %J Matematičeskoe modelirovanie %D 2017 %P 59-74 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a4/ %G ru %F MM_2017_29_4_a4
A. V. Karakin; M. M. Ramazanov; V. E. Borisov; I. S. Men'shov; E. B. Savenkov. Self-similar solution of hydraulic fracture problem for poroelastic medium. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 59-74. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a4/
[1] D. A. Spence, P. Sharp, “Self-similar solutions for elastohydrodynamic cavity flow”, Proceedings of the Royal Society of London, Series A, 400 (1985), 289–313 | DOI | MR | Zbl
[2] R. Carbonell, J. Desroches, E. Detournay, “A comparison between a semianalytical and a numerical solution of a two-dimensional hydraulic fracture”, Int. J. Solids Structures, 36:31–32 (1999), 4869–4888 | DOI | Zbl
[3] J. I. Adachi, E. Detournay, “Self-similar solution of a plane-strain fracture driven by a power-law fluid”, Int. J. Numer. Anal. Meth. Geomech., 26 (2002), 579–604 | DOI | Zbl
[4] E. Detournay, D. I. Garagash, “The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid”, J. Fluid Mech., 494 (2003), 1–32 | DOI | Zbl
[5] J. I. Adachi, E. Detournay, “Plane strain propagation of a hydraulic fracture in a permeable rock”, Engng. Fract. Mech., 75 (2008), 4666–4694 | DOI
[6] A. V. Karakin, M. M. Ramazanov, V. E. Borisov, “Problema nepolnoj svyazannosti uravnenij gidrorazryva”, Matematicheskoe modelirovanie, 29 (2017)
[7] A. V. Karakin, “Printsip nepolnoj svyazannosti v modelyah porouprugih sred”, Matematicheskoe modelirovanie, 18:2 (2006), 24–42
[8] A. V. Karakin, “Hydraulic fracturing in the upeer crust”, Izvestiya, Physics of the Solid Earth., 42:8 (2006), 652–667 | DOI
[9] E. D. Carter, “Optimum fluid characteristics for fracture extension”, Drilling and production practices, eds. Howard G. C., Fast C. R., American Petroleum Institute, Tulsa, 1957, 261–270
[10] A. Settary, “A new general model of fluid loss in hydraulic fracturing”, Soc. Pet. Engng. J., 25:4 (1985), SPE 11625, 491–501 | DOI
[11] M. Kachanov, B. Shafiro, Ig. Tsukrov, Handbook of Elasticity Solutions, Springer Science+Bisiness Media, B.V., 2003 | MR
[12] V. I. Fabrikant, Applications of Potential Theory in Mechanics. Selection of New Results, Kluwer Academic, Dordrecht, 1989 | MR | Zbl
[13] A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman Hall/CRC Press, Boca Raton, 2002 | MR | Zbl
[14] E. Detournay, A. H.-D. Cheng, “Fundamentals of poroelasticity”, Comprehensive Rock Engineering: Principles, Practice and Projects, Chapter 5, v. II, Analysis and Design Method, ed. C. Fairhurst, Pergamon Press, 1993, 113–171