Self-similar solution of hydraulic fracture problem for poroelastic medium
Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 59-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we present solution of coupled hydraulic fracture problem in view of deformation of poroelastic medium and porous media flow. The formation of crack and its growth are influenced by Newtonian fluid pumped through well. Solution self-similar sets are constructed. These solutions are used to describe the evolution of a penny shaped crack in poroelastic medium with a uniform pressure inside within the fracture. The present paper is part of a series of publications on hydraulic fracturing, which are based on the splitting of the original equations to components in accordance with an incomplete coupling principle.
Keywords: hydraulic fracture problem, poroelastic medium, incomplete coupling principle, selfsimilar solution.
@article{MM_2017_29_4_a4,
     author = {A. V. Karakin and M. M. Ramazanov and V. E. Borisov and I. S. Men'shov and E. B. Savenkov},
     title = {Self-similar solution of hydraulic fracture problem for poroelastic medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {59--74},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a4/}
}
TY  - JOUR
AU  - A. V. Karakin
AU  - M. M. Ramazanov
AU  - V. E. Borisov
AU  - I. S. Men'shov
AU  - E. B. Savenkov
TI  - Self-similar solution of hydraulic fracture problem for poroelastic medium
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 59
EP  - 74
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a4/
LA  - ru
ID  - MM_2017_29_4_a4
ER  - 
%0 Journal Article
%A A. V. Karakin
%A M. M. Ramazanov
%A V. E. Borisov
%A I. S. Men'shov
%A E. B. Savenkov
%T Self-similar solution of hydraulic fracture problem for poroelastic medium
%J Matematičeskoe modelirovanie
%D 2017
%P 59-74
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a4/
%G ru
%F MM_2017_29_4_a4
A. V. Karakin; M. M. Ramazanov; V. E. Borisov; I. S. Men'shov; E. B. Savenkov. Self-similar solution of hydraulic fracture problem for poroelastic medium. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 59-74. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a4/

[1] D. A. Spence, P. Sharp, “Self-similar solutions for elastohydrodynamic cavity flow”, Proceedings of the Royal Society of London, Series A, 400 (1985), 289–313 | DOI | MR | Zbl

[2] R. Carbonell, J. Desroches, E. Detournay, “A comparison between a semianalytical and a numerical solution of a two-dimensional hydraulic fracture”, Int. J. Solids Structures, 36:31–32 (1999), 4869–4888 | DOI | Zbl

[3] J. I. Adachi, E. Detournay, “Self-similar solution of a plane-strain fracture driven by a power-law fluid”, Int. J. Numer. Anal. Meth. Geomech., 26 (2002), 579–604 | DOI | Zbl

[4] E. Detournay, D. I. Garagash, “The near-tip region of a fluid-driven fracture propagating in a permeable elastic solid”, J. Fluid Mech., 494 (2003), 1–32 | DOI | Zbl

[5] J. I. Adachi, E. Detournay, “Plane strain propagation of a hydraulic fracture in a permeable rock”, Engng. Fract. Mech., 75 (2008), 4666–4694 | DOI

[6] A. V. Karakin, M. M. Ramazanov, V. E. Borisov, “Problema nepolnoj svyazannosti uravnenij gidrorazryva”, Matematicheskoe modelirovanie, 29 (2017)

[7] A. V. Karakin, “Printsip nepolnoj svyazannosti v modelyah porouprugih sred”, Matematicheskoe modelirovanie, 18:2 (2006), 24–42

[8] A. V. Karakin, “Hydraulic fracturing in the upeer crust”, Izvestiya, Physics of the Solid Earth., 42:8 (2006), 652–667 | DOI

[9] E. D. Carter, “Optimum fluid characteristics for fracture extension”, Drilling and production practices, eds. Howard G. C., Fast C. R., American Petroleum Institute, Tulsa, 1957, 261–270

[10] A. Settary, “A new general model of fluid loss in hydraulic fracturing”, Soc. Pet. Engng. J., 25:4 (1985), SPE 11625, 491–501 | DOI

[11] M. Kachanov, B. Shafiro, Ig. Tsukrov, Handbook of Elasticity Solutions, Springer Science+Bisiness Media, B.V., 2003 | MR

[12] V. I. Fabrikant, Applications of Potential Theory in Mechanics. Selection of New Results, Kluwer Academic, Dordrecht, 1989 | MR | Zbl

[13] A. D. Polyanin, Handbook of Linear Partial Differential Equations for Engineers and Scientists, Chapman Hall/CRC Press, Boca Raton, 2002 | MR | Zbl

[14] E. Detournay, A. H.-D. Cheng, “Fundamentals of poroelasticity”, Comprehensive Rock Engineering: Principles, Practice and Projects, Chapter 5, v. II, Analysis and Design Method, ed. C. Fairhurst, Pergamon Press, 1993, 113–171