Using GPU for solving problems of combustion and physical-chemical transformations
Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of the present paper is to study the applicability of modern GPU for computation of combustion and detonation problems for an unsteady regime. Comparison of the capacity of the GPU and CPUs, connected in parallel, for solving problems of detonation initiation is provided.
Mots-clés : combustion
Keywords: detonation, chemical kinetics, gas dynamics, parallel computing, GPU.
@article{MM_2017_29_4_a0,
     author = {V. B. Betelin and V. F. Nikitin and N. N. Smirnov and M. N. Smirnova and L. I. Stamov and V. V. Tyurenkova},
     title = {Using {GPU} for solving problems of combustion and physical-chemical transformations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a0/}
}
TY  - JOUR
AU  - V. B. Betelin
AU  - V. F. Nikitin
AU  - N. N. Smirnov
AU  - M. N. Smirnova
AU  - L. I. Stamov
AU  - V. V. Tyurenkova
TI  - Using GPU for solving problems of combustion and physical-chemical transformations
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 3
EP  - 20
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a0/
LA  - ru
ID  - MM_2017_29_4_a0
ER  - 
%0 Journal Article
%A V. B. Betelin
%A V. F. Nikitin
%A N. N. Smirnov
%A M. N. Smirnova
%A L. I. Stamov
%A V. V. Tyurenkova
%T Using GPU for solving problems of combustion and physical-chemical transformations
%J Matematičeskoe modelirovanie
%D 2017
%P 3-20
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a0/
%G ru
%F MM_2017_29_4_a0
V. B. Betelin; V. F. Nikitin; N. N. Smirnov; M. N. Smirnova; L. I. Stamov; V. V. Tyurenkova. Using GPU for solving problems of combustion and physical-chemical transformations. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a0/

[1] R. J. Kee, F. M. Rupley, J. A. Miller and ets., Chemkin: a softare package for the analysis of gasphase chemical and plasma kinetics, Chemkin Collection: Release 3.6, Reaction Design, Inc., San Diego, CA, USA, 2000

[2] N. M. Marinov, W. J. Pitz, C. K. Westbrook, M. Hori, N. A. Matsunaga, “Experimental and kinetic calculation of the promotion effect of hydrocarbons on the NO-NO2 conversion in a flow reactor”, Proceedings of the Combustion Institute, 27 (1998), 389–396 | DOI

[3] R. J. Kee, J. A. Miller, T. H. Jefferson, Chemkin: a general-purpose, problem-independent, transportable Fortran chemical kinetics code package, Sandia National Laboratories Report SAND80-8003, Sandia National Laboratories, Albuquerque, NM and Livermore, CA, USA, 1980

[4] S. Browne, J. Ziegler, J. E. Shepherd, Numerical solution methods for shock and detonation jump conditions, GALCIT Report FM2006.006, California Institute of Technology, Pasadena, CA, USA, 2008

[5] S. Gordon, B. J. McBride, Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications I. Analysis, NASA RP-1311, NASA Lewis Research Center, Washington, USA, 1994

[6] Z. G. Pozdniakov, B. D. Possi, Spravochnik po promyshlennym vzryvchatym vesnshestvam i sredstvam vzryvaniia, Nedra, M., 1977, 253 pp.

[7] E. Iu. Orlova, Khimiia i tekhnologiia brizantnykh vzryvchatykh veshchestv, Uchebnik dlia vuzov, Izd. 3-e, pererab., Khimiia, Leningradskoe otdelenie, L., 1981, 312 pp.

[8] U. Maas, J. Warnatz, “Ignition process in hydrogen-oxygen mixtures”, Combustion and Flame, 74:1 (1988), 53–69 | DOI

[9] U. Maas, S. B. Pope, “Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space”, Combustion and Flame, 88 (1992), 239–264 | DOI

[10] J. Li, Z. Zhao, A. Kazakov, F. L. Dryer, “An Updated Comprehensive Kinetic Model of Hydrogen Combustion”, International Journal of Chemical Kinetics, 36 (2004), 566–575 | DOI

[11] Z. Hong, An improved hydrogen/oxygen mechanism based on shock tube/laser absorption measurements, Dissertation for the degree of doctor of philosophy, Stanford University, USA, California, 2010

[12] N. N. Smirnov, V. F. Nikitin, “Modeling and simulation of hydrogen combustion in engines”, International Journal of Hydrogen Energy, 39:2 (2014), 1122–1136 | DOI | MR

[13] N. N. Smirnov, Yu. G. Phylippov, V. F. Nikitin, M. V. Silnikov, “Modeling of combustion in engines fed by hydrogen”, WSEAS Transactions on Fluid Mechanics, 9 (2014), 154–167

[14] NVIDIA CUDA. Programming Guide, , 2014 http://developer.nvidia.com/cuda-downloads

[15] V. Leer, B. Towards, “The Ultimate Conservative Difference Scheme. A Second Order Sequel to Godunov's Method”, Journal of Computational Physics, 32 (1979), 101–136 | DOI | MR

[16] M.-S. Liou, “A Sequel to AUSM: AUSM+”, Journal of Computational Physics, 129 (1996), 364–382 | DOI | MR | Zbl

[17] G.-S. Jiang, E. Tadmor, “Nonoscillatory central schemes for multidimensional hyperbolic conservation laws”, SIAM Journal on Scientific Computing, 19:6 (1998), 1892–1917 | DOI | MR | Zbl

[18] H. Nessyahu, E. Tadmor, “Non-oscillatory central differencing for hyperbolic conservation laws”, Journal of Computational Physics, 87 (1990), 408–463 | DOI | MR | Zbl