Disturbance evolution in the shock impact of a density non-uniform medium
Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 95-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work the problem of two semi-infinite plates impact is analyzed theoretically and numerically. At initial, the density field in the impactor is perturbed while the pressure distribution is constant. We consider high velocity impact so that the problem is solved with the hydrodynamic approach. It is theoretically shown that different modes of the perturbation evolution in plates can be realized due to initial data. Numerical simulations are carried out by using Godunov-type methods with different numerical flux approximations. The stationary and moving eulerian meshes are employed. Analyzing comparison between numerical results with analytical solutions conclusions are inferred on numerical approaches best fitted for solving such impact contact problems.
Keywords: shock impact, entropy and shock waves, linear analysis of stability, numerical modeling.
@article{MM_2017_29_3_a7,
     author = {K. E. Gorodnichev and P. P. Zakharov and S. E. Kuratov and I. S. Menshov and A. A. Serezhkin},
     title = {Disturbance evolution in the shock impact of a density non-uniform medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--112},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a7/}
}
TY  - JOUR
AU  - K. E. Gorodnichev
AU  - P. P. Zakharov
AU  - S. E. Kuratov
AU  - I. S. Menshov
AU  - A. A. Serezhkin
TI  - Disturbance evolution in the shock impact of a density non-uniform medium
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 95
EP  - 112
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a7/
LA  - ru
ID  - MM_2017_29_3_a7
ER  - 
%0 Journal Article
%A K. E. Gorodnichev
%A P. P. Zakharov
%A S. E. Kuratov
%A I. S. Menshov
%A A. A. Serezhkin
%T Disturbance evolution in the shock impact of a density non-uniform medium
%J Matematičeskoe modelirovanie
%D 2017
%P 95-112
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_3_a7/
%G ru
%F MM_2017_29_3_a7
K. E. Gorodnichev; P. P. Zakharov; S. E. Kuratov; I. S. Menshov; A. A. Serezhkin. Disturbance evolution in the shock impact of a density non-uniform medium. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 95-112. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a7/

[1] J. Lindl, O. Landen et al., “Review of the National Ignition Campaign 2009–2012”, Phys. Plasmas, 21 (2014), 050201

[2] T. R. Dittrich, O. A. Hurricane, “Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility”, Phys. Rev. Lett., 112 (2014), 055002 | DOI

[3] V. A. Smalyuk, R. E. Tipton et al., “Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility”, Phys. Rev. Lett., 112 (2014), 025002 | DOI

[4] G. I. Kanel, S. V. Razorenov i dr., Eksperimentalnye profili udarnykh voln v kondensirovannykh veshchestvakh, Fizmatlit, M., 2008

[5] S. P. Diakov, “Ob ustoichivosti udarnykh voln”, ZhETF, 27:3(9) (1954), 288–295 | Zbl

[6] A. L. Velikovich, J. G. Wouchuk et al., “Shock front distortion and Richtmyer-Meshkov-like growth caused by a small pre-shock non-uniformity”, Phys. Plasmas, 14 (2007), 072706 | DOI

[7] C. Huete Ruiz de Lira, A. L. Velikovich, J. G. Wouchuk, “Analytical linear theory for the iteraction of a planar shock wave with a two- or three-dimensional random isotropic density field”, Phys. Rev. E, 83 (2011), 056320 | DOI | MR

[8] C. Huete Ruiz de Lira, Turbulence generation by a shock wave interacting with a random density inhomogeneity field, 2010, arXiv: 1006.1819v2

[9] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon, NY., 1987 | MR | Zbl

[10] N. M. Kuznetsov, “Stability of shock waves”, Sov. Phys. Usp., 32 (1989), 993–1012 | DOI

[11] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Comm. on Pure and Appl. Math., 13 (1960), 297–319 | DOI | MR

[12] E. E. Meshkov, Issledovaniia gidrodinamicheskikh neustoichivostei v laboratornykh eksperimentakh, Sarov, 2006

[13] A. N. Razin, Modelirovanie neustoichivosti i turbulentnogo peremeshivaniia v sloistykh sistemakh, Sarov, 2010

[14] N. A. Inogamov, A. Iu. Demianov, E. E. Son, Gidrodinamika peremeshevaniia, MFTI, M., 1999

[15] N. A. Inogamov, “Statistics of Long-Wavelength Fluctuations and the Expansion Rate of Richtmyer–Meshkov Turbulence Zone”, JETP Lett., 75:11 (2002), 547–551 | DOI

[16] J. G. Wouchuk, “Growth rate of linear Richtmyer–Meshkov instability when a shok is reflected”, Phys. Rev. E, 63 (2001), 056303 | DOI

[17] Y. Yang, Q. Zhang, “Small amplitude theory of Richtmyer–Meshkov instability”, Phys. Fluids, 1994, no. 6(5) | MR

[18] K. Nishihara, J. G. Wouchuk, C. Matsuoka et al., “Richtmyer–Meshkov instability: theory of linear and nonlinear evolution”, Phil. Trans. R. Soc. A, 368 (2010), 1769–1807 | DOI | Zbl

[19] E. I. Zababakhin, Nekotorye voprosy gidrodinamiki vzryva, Snezhinsk, 1997

[20] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical aspects of numerical solution of hyperbolic systems, Chapman Hall, 2001 | MR | Zbl

[21] K. E. Gorodnichev, S. E. Kuratov, “Razvitie vozmushchenii v sisteme stalkivaiushchikhsia plastin”, VANT ser. Mat. mod. fiz. prots., 2013, no. 2, 37–47

[22] R. I. Nigmatulin, Dinamika mnogofaznykh sred, Nauka, 1987

[23] I. S. Menshov, A. V. Mischenko, A. A. Serejkin, “Numerical Modeling of Elastoplastic Flows by the Godunov Method on Moving Eulerian Grids”, Mathematical Models and Computer Simulations, 6:2 (2014), 127–141 | DOI | MR | Zbl

[24] S. K. Godunov, A. V. Zabrodin i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976

[25] V. V. Rusanov, “Raschet vzaimodeistviia nestatsionarnykh udarnykh voln s prepiatstviiami”, Vych. Mat. I Mat. Fiz., 1:2 (1961), 267–279

[26] W. K. Anderson, J. L. Thomas, B. Van Leer, “Comparison of finite volume flux vector splittings for the Euler equation”, AIAA Journal, 24:9 (1986), 1453–1460 | DOI

[27] I. Menshov, P. Zakharov, “On the composite Riemann problem for multi-material fluid flows”, Int. J. Numer. Meth. Fluids, 76:2 (2014), 109–127 | DOI | MR

[28] J. K. Dukowicz, “The Richtmyer–Meshkov Instability”, J. of Comp. Phys., 61 (1985), 119–137 | DOI | MR | Zbl

[29] Iu. V. Ianilkin (red.), Kod EGIDA-2D dlia modelirovaniia dvumernykh zadach, Sarov, 2008