Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_3_a7, author = {K. E. Gorodnichev and P. P. Zakharov and S. E. Kuratov and I. S. Menshov and A. A. Serezhkin}, title = {Disturbance evolution in the shock impact of a density non-uniform medium}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {95--112}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a7/} }
TY - JOUR AU - K. E. Gorodnichev AU - P. P. Zakharov AU - S. E. Kuratov AU - I. S. Menshov AU - A. A. Serezhkin TI - Disturbance evolution in the shock impact of a density non-uniform medium JO - Matematičeskoe modelirovanie PY - 2017 SP - 95 EP - 112 VL - 29 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a7/ LA - ru ID - MM_2017_29_3_a7 ER -
%0 Journal Article %A K. E. Gorodnichev %A P. P. Zakharov %A S. E. Kuratov %A I. S. Menshov %A A. A. Serezhkin %T Disturbance evolution in the shock impact of a density non-uniform medium %J Matematičeskoe modelirovanie %D 2017 %P 95-112 %V 29 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_3_a7/ %G ru %F MM_2017_29_3_a7
K. E. Gorodnichev; P. P. Zakharov; S. E. Kuratov; I. S. Menshov; A. A. Serezhkin. Disturbance evolution in the shock impact of a density non-uniform medium. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 95-112. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a7/
[1] J. Lindl, O. Landen et al., “Review of the National Ignition Campaign 2009–2012”, Phys. Plasmas, 21 (2014), 050201
[2] T. R. Dittrich, O. A. Hurricane, “Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility”, Phys. Rev. Lett., 112 (2014), 055002 | DOI
[3] V. A. Smalyuk, R. E. Tipton et al., “Measurements of an Ablator-Gas Atomic Mix in Indirectly Driven Implosions at the National Ignition Facility”, Phys. Rev. Lett., 112 (2014), 025002 | DOI
[4] G. I. Kanel, S. V. Razorenov i dr., Eksperimentalnye profili udarnykh voln v kondensirovannykh veshchestvakh, Fizmatlit, M., 2008
[5] S. P. Diakov, “Ob ustoichivosti udarnykh voln”, ZhETF, 27:3(9) (1954), 288–295 | Zbl
[6] A. L. Velikovich, J. G. Wouchuk et al., “Shock front distortion and Richtmyer-Meshkov-like growth caused by a small pre-shock non-uniformity”, Phys. Plasmas, 14 (2007), 072706 | DOI
[7] C. Huete Ruiz de Lira, A. L. Velikovich, J. G. Wouchuk, “Analytical linear theory for the iteraction of a planar shock wave with a two- or three-dimensional random isotropic density field”, Phys. Rev. E, 83 (2011), 056320 | DOI | MR
[8] C. Huete Ruiz de Lira, Turbulence generation by a shock wave interacting with a random density inhomogeneity field, 2010, arXiv: 1006.1819v2
[9] L. D. Landau, E. M. Lifshitz, Fluid Mechanics, Pergamon, NY., 1987 | MR | Zbl
[10] N. M. Kuznetsov, “Stability of shock waves”, Sov. Phys. Usp., 32 (1989), 993–1012 | DOI
[11] R. D. Richtmyer, “Taylor instability in shock acceleration of compressible fluids”, Comm. on Pure and Appl. Math., 13 (1960), 297–319 | DOI | MR
[12] E. E. Meshkov, Issledovaniia gidrodinamicheskikh neustoichivostei v laboratornykh eksperimentakh, Sarov, 2006
[13] A. N. Razin, Modelirovanie neustoichivosti i turbulentnogo peremeshivaniia v sloistykh sistemakh, Sarov, 2010
[14] N. A. Inogamov, A. Iu. Demianov, E. E. Son, Gidrodinamika peremeshevaniia, MFTI, M., 1999
[15] N. A. Inogamov, “Statistics of Long-Wavelength Fluctuations and the Expansion Rate of Richtmyer–Meshkov Turbulence Zone”, JETP Lett., 75:11 (2002), 547–551 | DOI
[16] J. G. Wouchuk, “Growth rate of linear Richtmyer–Meshkov instability when a shok is reflected”, Phys. Rev. E, 63 (2001), 056303 | DOI
[17] Y. Yang, Q. Zhang, “Small amplitude theory of Richtmyer–Meshkov instability”, Phys. Fluids, 1994, no. 6(5) | MR
[18] K. Nishihara, J. G. Wouchuk, C. Matsuoka et al., “Richtmyer–Meshkov instability: theory of linear and nonlinear evolution”, Phil. Trans. R. Soc. A, 368 (2010), 1769–1807 | DOI | Zbl
[19] E. I. Zababakhin, Nekotorye voprosy gidrodinamiki vzryva, Snezhinsk, 1997
[20] A. G. Kulikovskii, N. V. Pogorelov, A. Yu. Semenov, Mathematical aspects of numerical solution of hyperbolic systems, Chapman Hall, 2001 | MR | Zbl
[21] K. E. Gorodnichev, S. E. Kuratov, “Razvitie vozmushchenii v sisteme stalkivaiushchikhsia plastin”, VANT ser. Mat. mod. fiz. prots., 2013, no. 2, 37–47
[22] R. I. Nigmatulin, Dinamika mnogofaznykh sred, Nauka, 1987
[23] I. S. Menshov, A. V. Mischenko, A. A. Serejkin, “Numerical Modeling of Elastoplastic Flows by the Godunov Method on Moving Eulerian Grids”, Mathematical Models and Computer Simulations, 6:2 (2014), 127–141 | DOI | MR | Zbl
[24] S. K. Godunov, A. V. Zabrodin i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976
[25] V. V. Rusanov, “Raschet vzaimodeistviia nestatsionarnykh udarnykh voln s prepiatstviiami”, Vych. Mat. I Mat. Fiz., 1:2 (1961), 267–279
[26] W. K. Anderson, J. L. Thomas, B. Van Leer, “Comparison of finite volume flux vector splittings for the Euler equation”, AIAA Journal, 24:9 (1986), 1453–1460 | DOI
[27] I. Menshov, P. Zakharov, “On the composite Riemann problem for multi-material fluid flows”, Int. J. Numer. Meth. Fluids, 76:2 (2014), 109–127 | DOI | MR
[28] J. K. Dukowicz, “The Richtmyer–Meshkov Instability”, J. of Comp. Phys., 61 (1985), 119–137 | DOI | MR | Zbl
[29] Iu. V. Ianilkin (red.), Kod EGIDA-2D dlia modelirovaniia dvumernykh zadach, Sarov, 2008